论文部分内容阅读
为更好地评估巡航导弹自由飞行阶段的可靠性,对小样本回归问题进行研究。首先对实验数据进行特征选择与提取得到学习样本,在此基础上利用支持向量机(supportvectormachine,SVM)方法进行可靠性评估研究,然后通过仿真实验对比神经网络与支持向量机2种方法的评估效果。结果证明:SVM的训练学习效率更高,同时能够保证较好的泛化性能,提高自由飞行阶段可靠性的评估效果。