论文部分内容阅读
We propose a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled singlemolecule magnets, [Mn4]2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between a pair of the four quantum computing bases and between the quantum computing bases and excited states are evaluated and analysed.