论文部分内容阅读
生物界中,植物比动物更容易受到大气污染的影响和危害。这是因为植物既有庞大的叶面积与空气接触并进行着活跃的气体交换;又不能像高等动物那样具有优异的循环系统,可有效缓解外界影响,为其细胞和组织提供较为稳定的内环境;此外,植物的分布一般又是固定不动的,不像动物可以通过移动避开污染。植物若受高浓度的大气污染的袭击,短期内即在叶片上出现坏死斑,称为急性伤害;若长期与低浓度污染物接触而使植物生长受阻,发育不良,出现失绿、早衰等现象,称为慢性伤害。也就是说,只要大气污染的浓度超过了植物的忍耐程度,就会使植物的细胞和组织器官受到伤害,生理功能和生长发育受阻,使得产量下降,品质变坏,甚至造成植物群落组成发生变化、植物个体死亡、种群消失。
大气污染可以伤害植物的细胞和细胞器。细胞的膜系统在大气污染的作用下,差别透性被破坏,引起水分子和离子平衡失调,造成代谢紊乱。破坏严重时,细胞内分隔作用消失,细胞器崩溃,导致最后死亡。其中膜类脂是污染物的一个主要作用点。例如,O3能使膜类脂发生过氧化,干扰它的生物合成;SO2的伤害作用也与膜类脂的过氧化过程有关;叶绿体的膜结构也是在O3和SO2的联合作用下被破坏的。
大气污染还能对植物体内的酶系统产生影响。大气污染物通过对植物酶系统的作用进而影响其生化反应,从而导致原有正常代谢平衡的破坏。例如,氟化物是多种酶的抑制剂,对糖醇降解途径中的一个重要成分烯醇化酶的抑制作用特别显著;又如O3和过氧乙酰硝酸脂是强氧化剂,能使许多酶蛋白质中的巯基被氧化而失去活性。大气污染对植物组织、器官的危害主要表现为组织坏死和器官脱落。植物遭受大气污染物急性伤害的症状是叶面点、片伤斑和叶组织坏死;而各种污染物对叶片的伤害往往各有特殊的症状,这便成为大气污染“伤害诊断”的主要依据。植物接触SO2、O3等大气污染物以后,体内还常常产生应激乙烯或伤害乙烯,这是造成叶、蕾、花、果实等器官脱落的主要原因。大气污染还影响植物的个体发育和群落发展。大气污染使得植物个体生长减慢、发育受阻、失绿黄化、早衰等,有时还会引起异常的生长反应。急性伤害发生时,叶面部分坏死或脱落,光合面积减少,植株生长减慢,产量下降;慢性伤害发生时,植物代谢失调,生理过程如光合作用、呼吸作用等不能正常进行,引起生长发育受阻。在大气污染物的长期作用下,一些敏感的植物种群将会减少甚至消亡;而另一些抗性较强的种群则会保存下来,甚至能得到一定的发展。
SO2污染对植物的影响很大。硫是植物发育的必需元素,空气中少量的SO2经叶片吸收后可进入植物的硫代谢中。在土壤缺硫条件下,大气中含少量SO2对植物生长有利。SO2经过气孔进入叶组织后,溶于浸润细胞壁的水分中,产生SO2-3或HSO-3,然后被细胞氧化成SO2-4。SO2-4的毒性远比SO2-3或HSO-3小,而且可被植物作为硫源利用。所以这种氧化过程被认为是解毒过程。如果SO2进入的速度超过了细胞对它的氧化速度,SO2-3或HSO-3积累起来,便会引起急性伤害。在继续不断地吸收并氧化SO2-3的情况下,SO2-4的积累量超过了细胞耐受程度,就会造成慢性伤害。
典型的SO2伤害症状出现在植物叶片的叶脉间,呈不规则的点状、条状或块状坏死区。坏死区和健康组织之间的界限比较分明,坏死区颜色以灰白色和黄褐色居多。有些植物叶片的坏死区在叶子边缘或前端。同一植株上,刚刚完成伸展的嫩叶最易受伤害,中龄叶次之,老叶和未伸展的嫩叶抗性较强。
氟化物污染的危害也很大。大气中氟污染物主要是氟化氢(HF)。它是一种强酸,故对植物产生酸型烧灼状伤害。F-是烯醇化酶的强烈抑制剂,可使糖酵解受到抑制;F-还能够抑制同纤维素合成有关的葡萄糖磷酸变位酶的活性。氟在植物组织内还能与金属离子如钙、镁、铜、锌、铁或铝等结合,容易引起这些元素的缺乏症,如缺钙症等。氟化物的排放量和污染范围比SO2小得多,但对植物的毒性却更强。当空气中含ppb级浓度HF时,接触几个星期可使敏感植物受害。氟是积累性毒物,植物叶子能继续不断地吸收空气中极微量的氟,吸收的F-随蒸腾流转移至叶尖和叶缘,在那里积累至一定浓度后就会使组织坏死。植物受氟害的典型症状是叶尖和叶缘坏死,伤区与非伤区之间常有一条红色或深褐色界线。
氟化物污染最容易危害正在伸展中的幼嫩叶子,使之出现枝梢顶端枯死现象。此外,氟伤害还常伴有失绿和过早落叶现象,使生长受抑制,对结实过程也有不良影响。实验表明,氟化物对花粉粒发芽和花粉管伸长有抑制作用。氟污染使成熟前的桃、杏等果实在沿缝合线处的果肉过早成熟软化,降低果实质量。
莴苣、番茄、芥菜、菜豆、燕麦、大丽花、矮牵牛等植物对PAN污染比较敏感,在PAN浓度为15ppb~20ppb的空气中接触4h即受害。PAN的叶伤害症状表现为叶背呈银白色,进一步发展呈青铜色。植物受PAN伤害的另一特点是:植物如果接触PAN前处在黑暗中则抗性强;如果受光照2h~3h后再接触,就变得敏感。
氧化剂伤害在不出现可见症状的情况下也会使植物生长明显受阻。这是由于质体破坏,一些酶受抑制,从而降低了光合活动能力引起的。O3和PAN还使希尔反应和光合磷酸化受到抑制,使膜的选择性发生变化,严重时还会使细胞分隔作用解体,引起代谢紊乱。
乙烯是植物激素之一,在植物生长发育中起着极其重要的调控作用。天然氣、煤、石油以及植物体和垃圾等的不完全燃烧和汽车废气都会造成乙烯污染。乙烯污染大气,就会干扰植物调控机能,引发异常反应。
引起植物异常反应的乙烯限制浓度为10ppb~100ppb。乙烯污染对植物的影响是多方面的。一是产生“偏上生长”效应,即叶柄上下两边生长速度不等,造成叶片下垂。二是引起叶片、花蕾、花和果实脱落、影响某些农作物产量和花卉的观赏效果。三是有一些植物因接触乙烯而产生不正常的生长反应,如茎变粗,节间变短,顶端优势消失,侧枝丛生;还有一些植物会产生一些特殊现象,如棉花花蕾萼片张开,黄瓜卷须弯曲等。四是乙烯使某些植物如石竹、紫花苜蓿、夹竹桃等正在开放的花朵发生闭花现象,又称“睡眠”效应。五是能导致叶片和果实失绿,加速植物衰老。
大气污染可以伤害植物的细胞和细胞器。细胞的膜系统在大气污染的作用下,差别透性被破坏,引起水分子和离子平衡失调,造成代谢紊乱。破坏严重时,细胞内分隔作用消失,细胞器崩溃,导致最后死亡。其中膜类脂是污染物的一个主要作用点。例如,O3能使膜类脂发生过氧化,干扰它的生物合成;SO2的伤害作用也与膜类脂的过氧化过程有关;叶绿体的膜结构也是在O3和SO2的联合作用下被破坏的。
大气污染还能对植物体内的酶系统产生影响。大气污染物通过对植物酶系统的作用进而影响其生化反应,从而导致原有正常代谢平衡的破坏。例如,氟化物是多种酶的抑制剂,对糖醇降解途径中的一个重要成分烯醇化酶的抑制作用特别显著;又如O3和过氧乙酰硝酸脂是强氧化剂,能使许多酶蛋白质中的巯基被氧化而失去活性。大气污染对植物组织、器官的危害主要表现为组织坏死和器官脱落。植物遭受大气污染物急性伤害的症状是叶面点、片伤斑和叶组织坏死;而各种污染物对叶片的伤害往往各有特殊的症状,这便成为大气污染“伤害诊断”的主要依据。植物接触SO2、O3等大气污染物以后,体内还常常产生应激乙烯或伤害乙烯,这是造成叶、蕾、花、果实等器官脱落的主要原因。大气污染还影响植物的个体发育和群落发展。大气污染使得植物个体生长减慢、发育受阻、失绿黄化、早衰等,有时还会引起异常的生长反应。急性伤害发生时,叶面部分坏死或脱落,光合面积减少,植株生长减慢,产量下降;慢性伤害发生时,植物代谢失调,生理过程如光合作用、呼吸作用等不能正常进行,引起生长发育受阻。在大气污染物的长期作用下,一些敏感的植物种群将会减少甚至消亡;而另一些抗性较强的种群则会保存下来,甚至能得到一定的发展。
SO2污染对植物的影响很大。硫是植物发育的必需元素,空气中少量的SO2经叶片吸收后可进入植物的硫代谢中。在土壤缺硫条件下,大气中含少量SO2对植物生长有利。SO2经过气孔进入叶组织后,溶于浸润细胞壁的水分中,产生SO2-3或HSO-3,然后被细胞氧化成SO2-4。SO2-4的毒性远比SO2-3或HSO-3小,而且可被植物作为硫源利用。所以这种氧化过程被认为是解毒过程。如果SO2进入的速度超过了细胞对它的氧化速度,SO2-3或HSO-3积累起来,便会引起急性伤害。在继续不断地吸收并氧化SO2-3的情况下,SO2-4的积累量超过了细胞耐受程度,就会造成慢性伤害。
典型的SO2伤害症状出现在植物叶片的叶脉间,呈不规则的点状、条状或块状坏死区。坏死区和健康组织之间的界限比较分明,坏死区颜色以灰白色和黄褐色居多。有些植物叶片的坏死区在叶子边缘或前端。同一植株上,刚刚完成伸展的嫩叶最易受伤害,中龄叶次之,老叶和未伸展的嫩叶抗性较强。
氟化物污染的危害也很大。大气中氟污染物主要是氟化氢(HF)。它是一种强酸,故对植物产生酸型烧灼状伤害。F-是烯醇化酶的强烈抑制剂,可使糖酵解受到抑制;F-还能够抑制同纤维素合成有关的葡萄糖磷酸变位酶的活性。氟在植物组织内还能与金属离子如钙、镁、铜、锌、铁或铝等结合,容易引起这些元素的缺乏症,如缺钙症等。氟化物的排放量和污染范围比SO2小得多,但对植物的毒性却更强。当空气中含ppb级浓度HF时,接触几个星期可使敏感植物受害。氟是积累性毒物,植物叶子能继续不断地吸收空气中极微量的氟,吸收的F-随蒸腾流转移至叶尖和叶缘,在那里积累至一定浓度后就会使组织坏死。植物受氟害的典型症状是叶尖和叶缘坏死,伤区与非伤区之间常有一条红色或深褐色界线。
氟化物污染最容易危害正在伸展中的幼嫩叶子,使之出现枝梢顶端枯死现象。此外,氟伤害还常伴有失绿和过早落叶现象,使生长受抑制,对结实过程也有不良影响。实验表明,氟化物对花粉粒发芽和花粉管伸长有抑制作用。氟污染使成熟前的桃、杏等果实在沿缝合线处的果肉过早成熟软化,降低果实质量。
莴苣、番茄、芥菜、菜豆、燕麦、大丽花、矮牵牛等植物对PAN污染比较敏感,在PAN浓度为15ppb~20ppb的空气中接触4h即受害。PAN的叶伤害症状表现为叶背呈银白色,进一步发展呈青铜色。植物受PAN伤害的另一特点是:植物如果接触PAN前处在黑暗中则抗性强;如果受光照2h~3h后再接触,就变得敏感。
氧化剂伤害在不出现可见症状的情况下也会使植物生长明显受阻。这是由于质体破坏,一些酶受抑制,从而降低了光合活动能力引起的。O3和PAN还使希尔反应和光合磷酸化受到抑制,使膜的选择性发生变化,严重时还会使细胞分隔作用解体,引起代谢紊乱。
乙烯是植物激素之一,在植物生长发育中起着极其重要的调控作用。天然氣、煤、石油以及植物体和垃圾等的不完全燃烧和汽车废气都会造成乙烯污染。乙烯污染大气,就会干扰植物调控机能,引发异常反应。
引起植物异常反应的乙烯限制浓度为10ppb~100ppb。乙烯污染对植物的影响是多方面的。一是产生“偏上生长”效应,即叶柄上下两边生长速度不等,造成叶片下垂。二是引起叶片、花蕾、花和果实脱落、影响某些农作物产量和花卉的观赏效果。三是有一些植物因接触乙烯而产生不正常的生长反应,如茎变粗,节间变短,顶端优势消失,侧枝丛生;还有一些植物会产生一些特殊现象,如棉花花蕾萼片张开,黄瓜卷须弯曲等。四是乙烯使某些植物如石竹、紫花苜蓿、夹竹桃等正在开放的花朵发生闭花现象,又称“睡眠”效应。五是能导致叶片和果实失绿,加速植物衰老。