论文部分内容阅读
针对基于内容的信息检索中负样本抽样效率低的问题,设计了1.5类支持向量分类器.在训练过程中利用正样本对分类线建立初始模型,在保证总体泛化能力的基础上,用所能获得的负样本修正分类线,以提高其检测精度;通过对比标准序列最小优化方法,得到快速训练算法.在美国邮政数据库(USPS数据库)与麻省理工大学人脸数据库(CBCL数据库)上的实验结果表明,与传统的支持向量分类器相比,这种方法能取得更高的检测精度.