论文部分内容阅读
针对SSD卷积神经网络模型对小目标检测精度不高的问题,提出了一种基于特征金字塔网络的SSD改进模型.特征金字塔网络可以将深层的携带有更抽象、更丰富的语义信息的卷积特征图与浅层的分辨率更高、更细节的卷积特征图进行融合.检测的过程是将原始SSD网络得到的多层特征图,经改进设计的横向连接层、上采样层、融合层和预测层处理后,再通过非极大值抑制得到最终的检测结果.采用PASCALVOC2007和2012(train+val)作为训练集,PASCALVOC2007(test)测试集的mAP达到了75.8%,相比原SS