基于余切相似度和BP神经网络的相似度快速计算

来源 :同济大学学报(自然科学版) | 被引量 : 0次 | 上传用户:keke127
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
相似性度量在大数据相关应用中具有重要的意义,然而传统余弦相似度遍历计算方法的准确性和时效性较差,具有较大局限性,无法为海量高维数据的质量评估提供有效依据。针对上述问题,利用余切三角函数和数据维度差值构造2种余切相似度公式,提高相似度计算的准确性;借助后向传播(BP)神经网络建立一个能够逼近数据集相似度映射关系的网络模型,降低相似度计算的时间复杂度。实验表明,改进的相似度快速计算方法具有良好的准确性和时效性,而且应用在大规模数据集时的性能提升更显著。
其他文献
金融体系是现代市场经济运行机制的枢纽。金融市场功能的完善和发挥更多地是借助金融集聚通道来实现的,金融集聚在经济持续增长的同时而发生,又不断通过对产业资源的优化配置