论文部分内容阅读
一、氢能源小车制作背景
普通高中课程改革提出化学教育的目标为培养学生五大关键核心素养。其中培养学生“科学精神与社会责任”是指:具有终身学习的意识和严谨求实的科学态度;崇尚真理,形成真理面前人人平等的意识;关注与化学有关的社会热点问题,认识环境保护和资源合理开发的重要性,具有可持续发展意识和绿色化学观念;深刻理解化学技术、社会和环境之间的相互关系,赞赏化学对社会发展的重大贡献,能运用已有知识和方法综合分析化学过程对自然可能带来的各种影响,权衡利弊,勇于承担责任,积极参与有关化学问题的社会决策。很显然这一素养不仅仅是停留在知识和技能、过程与方法等层面上,更多的是化学教育的意义。我们可以认为“科学精神与社会责任”是其他四大核心素养的服务目标,它是化学教育的“制高点”,因此如何在实践教学中落实这一关键核心素养意义深远。
当今社会,能源和环境是人类关注的两大焦点。但石油等不可再生能源日渐枯竭,并且其下游产品燃烧生成的CO2和SO2等气体,会导致温室效应和酸雨等环境问题,使人类面临严峻的挑战。所以研究高效环保的新能源成为热点。氢能作为一种无污染的能源,被公认为人类未来可以大量使用的能源之一。世界各国在开发氢能方面投入了大量的人力、物力和财力,以期早日实现氢能的广泛使用。汽车等人类生活必需的交通工具是耗能的主力军,因此借助科学原理将氢能(化学能)转化为电能作为汽车动力是未来汽车的一种发展趋势。若氢能源汽车全面投入生产使用,定能大大缓解能源短缺和环境污染问题。在实践教学中让学生参与氢能源小车的研发不仅可以掌握理论知识而且可以真切地感受科学精神和社会责任。
二、氢能源小车教具的研制
1.了解氢能源小车的核心部件——质子交换膜型的氢氧燃料电池
图1所示的质子交换膜型氢氧燃料电池的核心部分为膜电极组件(MEA),是在全氟磺酸质子膜两侧涂有相应催化剂的固体薄膜,起到催化反应和转移质子的作用。当MEA相应两侧附有氢气和氧气时,就可以将两者反应的化学能转变为电能,与一般原电池的工作原理基本相同。氢氧燃料电池与普通电池主要区别在于:一般电池的活性物质是预先放在电池内部的,因而电池容量取决于贮存的活性物质的量;而氢氧燃料电池的氢气和氧气是在反应的同时源源不断地输入,因此,这类电池实际上只是一个能量转换装置。所以氢氧燃料电池接上负载工作时,需向负极、正极不断地通入氢气和氧气,氢气在负极催化剂的作用下失去电子形成氢离子,氢离子穿过固体电解质全氟磺酸质子膜进入正极,正极上氧气在催化剂的作用下得电子,结合转移出来的氢离子最后变成水,这相当于水的电解反应的逆过程,而电子则沿外部电路由负极移向正极,用电的负载就能在外部电路中工作。工作时的电极反应及总反应:
负极:2H2-4e-==4H
EH2=0.00V
正极:O2 4e- 4H ==2H2O
EO2=1.23V
电池反应:2H2 O2==2H2O
依据电极电势来看,氢氧燃料电池单电池空载输出电压理论值为1.23V,负载时输出电压取决于电流密度,通常在0.5-1V[1]。质子交换膜型氢氧燃料电池具有很多明显的优点:高效节能,实际能量转化效率达40%~50%,工作电流大(1~4A/em2,0.6V),比功率高(0.1~0.2kW/kg),比能量大;使用固体电解质膜,可以避免电解质腐蚀;工作稳定可靠,常温下有80%的额定功率,可在低温(
普通高中课程改革提出化学教育的目标为培养学生五大关键核心素养。其中培养学生“科学精神与社会责任”是指:具有终身学习的意识和严谨求实的科学态度;崇尚真理,形成真理面前人人平等的意识;关注与化学有关的社会热点问题,认识环境保护和资源合理开发的重要性,具有可持续发展意识和绿色化学观念;深刻理解化学技术、社会和环境之间的相互关系,赞赏化学对社会发展的重大贡献,能运用已有知识和方法综合分析化学过程对自然可能带来的各种影响,权衡利弊,勇于承担责任,积极参与有关化学问题的社会决策。很显然这一素养不仅仅是停留在知识和技能、过程与方法等层面上,更多的是化学教育的意义。我们可以认为“科学精神与社会责任”是其他四大核心素养的服务目标,它是化学教育的“制高点”,因此如何在实践教学中落实这一关键核心素养意义深远。
当今社会,能源和环境是人类关注的两大焦点。但石油等不可再生能源日渐枯竭,并且其下游产品燃烧生成的CO2和SO2等气体,会导致温室效应和酸雨等环境问题,使人类面临严峻的挑战。所以研究高效环保的新能源成为热点。氢能作为一种无污染的能源,被公认为人类未来可以大量使用的能源之一。世界各国在开发氢能方面投入了大量的人力、物力和财力,以期早日实现氢能的广泛使用。汽车等人类生活必需的交通工具是耗能的主力军,因此借助科学原理将氢能(化学能)转化为电能作为汽车动力是未来汽车的一种发展趋势。若氢能源汽车全面投入生产使用,定能大大缓解能源短缺和环境污染问题。在实践教学中让学生参与氢能源小车的研发不仅可以掌握理论知识而且可以真切地感受科学精神和社会责任。
二、氢能源小车教具的研制
1.了解氢能源小车的核心部件——质子交换膜型的氢氧燃料电池
图1所示的质子交换膜型氢氧燃料电池的核心部分为膜电极组件(MEA),是在全氟磺酸质子膜两侧涂有相应催化剂的固体薄膜,起到催化反应和转移质子的作用。当MEA相应两侧附有氢气和氧气时,就可以将两者反应的化学能转变为电能,与一般原电池的工作原理基本相同。氢氧燃料电池与普通电池主要区别在于:一般电池的活性物质是预先放在电池内部的,因而电池容量取决于贮存的活性物质的量;而氢氧燃料电池的氢气和氧气是在反应的同时源源不断地输入,因此,这类电池实际上只是一个能量转换装置。所以氢氧燃料电池接上负载工作时,需向负极、正极不断地通入氢气和氧气,氢气在负极催化剂的作用下失去电子形成氢离子,氢离子穿过固体电解质全氟磺酸质子膜进入正极,正极上氧气在催化剂的作用下得电子,结合转移出来的氢离子最后变成水,这相当于水的电解反应的逆过程,而电子则沿外部电路由负极移向正极,用电的负载就能在外部电路中工作。工作时的电极反应及总反应:
负极:2H2-4e-==4H
EH2=0.00V
正极:O2 4e- 4H ==2H2O
EO2=1.23V
电池反应:2H2 O2==2H2O
依据电极电势来看,氢氧燃料电池单电池空载输出电压理论值为1.23V,负载时输出电压取决于电流密度,通常在0.5-1V[1]。质子交换膜型氢氧燃料电池具有很多明显的优点:高效节能,实际能量转化效率达40%~50%,工作电流大(1~4A/em2,0.6V),比功率高(0.1~0.2kW/kg),比能量大;使用固体电解质膜,可以避免电解质腐蚀;工作稳定可靠,常温下有80%的额定功率,可在低温(