论文部分内容阅读
公共场所视频监控网络部署日益完善,智能视频监控技术在安防、交通等领域作用越来越大。针对视频监控数据中的人类目标,提出一种基于计算机视觉的姿态识别方法。通过YOLO算法和AlphaPose模型完成对视频中人类目标检测识别以及姿态估计,在此基础上分析人体关节之间的角度对姿态分类的影响,从中提取有效的分类特征,构造并训练5层神经网络模型,完成对站、坐、躺最常见3种姿态分类。实验结果表明,训练得到的神经网络模型准确率达到85%以上,识别速率大约为每秒30帧,在安防监控、检测人员摔倒、疾病报警等方面具有一定应