论文部分内容阅读
样本距离机制的定义直接影响到KNN算法的准确性和效率。针对传统KNN算法在距离的定义及类别决定上的不足,提出了利用属性值对类别的重要性进行改进的KNN算法(FCD-KNN)。首先定义两个样本间的距离为属性值的相关距离,此距离有效度量了样本间的相似度。再根据此距离选取与待测试样本距离最小的K个近邻,最后根据各类近邻样本点的平均距离及个数判断待测试样本的类别。理论分析及仿真实验结果表明,FCD-KNN算法较传统KNN及距离加权-KNN的分类准确性要高。