论文部分内容阅读
To study the effect on regulation of cell cycle of osteosarcoma cell line MG63 tranceduced with exogenous p16ink4a and hRb1 genes, pIRES-p16ink4a-hRb1, pIRES-p16ink4a and pIRES-hRb1 plasmids were constructed by gene recombination technology. The recombinant plasmid was transferred into osteosarcoma cell line MG63 by metafectene, and the resistant clones were selected by G418 selective medium. mRNA and protein expression of osteosarcoma cell line were assayed by RT-PCR and West Blot respectively. Cell cycle and apoptosis were analyzed by subG1 flow cytometric. Cell proliferation was tested by MTT. In the genome of these transfected target cells, the expression of p16ink4a and hRb1 mRNA and protein were detected respectively in vitro. It was demonstrated with subG1 flow cytometric analysis and MTT method that p16ink4a and hRb1 genes cooperation more significantly inhibited cell growth and induced a more marked G1 arrest and apoptosis than p16ink4a/hRb1 alone (P<0.01). Coexpression of exogenous p16ink4a with hRb1 broke the regulatory feedback loop of p16ink4a-cyclinD1/CDK-hRb1 and played a more significant role in inhibiting cell growth as well as inducing cell apoptosis than p16ink4a or hRb1 did alone in vitro.