论文部分内容阅读
In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to option pricing and hedging. In this model, the market interest rate, the volatility of the underlying risky assets and the N-state compensator,depend on unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. We use the MEMM(minimal entropy martingale measure) as the equivalent martingale measure. The option price using this model is obtained by the Fourier transform method. We obtain a closed-form solution for the hedge ratio by applying the local risk minimizing hedging.
In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to option pricing and hedging. In this model, the market interest rate, the Volatility of the underlying risky assets and the N-state compensator, depend on unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. We use the MEMM (minimal entropy martingale measure) as the equivalent martingale measure. The option price using this model is obtained by the Fourier transform method. We obtain a closed-form solution for the hedge ratio by applying the local risk minimizing hedging.