论文部分内容阅读
摘要: 研究了單位设计域上二次随机系数回归模型在恒等设计类中的A-最优设计.首先证明了A-最优设计准则满足洛纳偏序性质;利用A-最优设计准则的洛纳偏序性质,证明了单位设计域上的二次随机系数回归模型在恒等设计类中的A-最优设计可以在包含设计域两个端点0,1在内的3个设计点上获得;进而给出了二次随机系数回归模型A-最优恒等设计的精确结果.结果表明,二次随机系数回归模型在恒等设计类中的A-最优设计不受到随机效应项的方差影响,其A-最优设计的第三个谱点位置接近单位设计域的中点,且在该点处的A-最优设计权重接近于0.5.
关键词: A-最优设计; 二次回归; 随机系数; 恒等设计
中图分类号: O 212.6 文献标志码: A 文章编号: 10005137(2017)02019505
Abstract: Aoptimal identical design of quadratic random coefficient regression model on the design domain of [0,1] is constructed in this paper.Loewner order character of Aoptimal criterion is proved in the paper and it is proved that Aoptimal identical design of quadratic random coefficient regression model could be obtained on three design points including the two extreme settings of the design domain of [0,1].Accurate result of Aoptimal identical design of quadratic random coefficient regression model is given in the paper.The result shows that Aoptimal identical design of quadratic random coefficient regression model does not depend on the variances of the random effects.The result also shows that the third spectral point of Aoptimal design is near the midpoint of the design domain of [0,1] and it′s weight coefficient of Aoptimal design is near 0.5.
Key words: Aoptimal design; quadratic regression; random coefficient; identical design
0 引 言
随机系数模型在生物学、心理学、经济学和药代动力学等领域的研究中被广泛应用,这些研究的目的往往不是了解个体自身的特性,而是个体所在总体的特性,此时将个体效应引入模型可大大提升模型的精度.早在20世纪90年代Liski等[1]就应用随机系数模型描述了林地类型、林分密度、气候以及遗传等因素对木材的影响,Pena等[2]则将随机系数模型应用于质量检测.近期也有很多关于随机系数回归模型的研究成果,李拂晓等[3]将随机系数自回归模型的变值点应用于股票价格的监测;Tjiong[4]采用随机系数Logit回归模型重新评估了英国非工作行程时间节省的评估指标;Feng & Zhang[5]采用随机系数的随机前沿方法研究了1997~2010年间美国大型银行的规模收益.
随机系数模型的最优设计近十几年来受到越来越多的重视,Schmelter等[6],Schwabe & Schmelter[7]分别讨论了随机截距模型和随机斜率模型在单位设计域上的最优设计;Debusho & Haines[8]针对具有随机截距的回归模型给出了均值参数在离散设计域上的D-最优和V-最优设计;程靖和岳荣先[9-10]讨论了两变量随机系数回归模型的最优设计;Cheng & Yue[11]获得了一阶异方差随机系数回归模型的几类最优设计;Grabhoff等[12]研究了由随机系数引起异方差的线性回归模型的最优设计轨迹的几何形状;Liu等[13]研究了随机系数回归模型的R-最优设计.
随机系数回归模型存在较为复杂的方差-协方差结构,已有的成果多集中在对低阶随机系数回归模型最优设计的研究.本文作者以一元二次随机系数回归模型为研究对象,讨论其在单位设计域上的A-最优设计.首先证明了A-最优设计准则满足偏序性质,进而证明了一元二次随机系数回归模型的A-最优设计可以在包含设计域两个端点0,1的3个设计点上获得,并给出了A-最优设计的精确结果.结论表明,一元二次随机系数回归模型的A-优设计不依赖与随机效应项的方差.
在二次随机系数回归模型中A-最优设计不依赖于随机效应项的方差,可以在包含0,1两个端点在内的3个设计点上获得,且第三个设计点在中点0.5附近,在该点上有接近0.5的权重.
参考文献:
[1] Liski E P,Mandal N K,Shah K R,et al.Topics in optimal design [M].New York:SpringerVerlag,2002.
[2] Pea D,Yohai V J.A Dirichlet random coefficient regression model for estimating attribute weights in quality indicators [J].Journal of Statistical Planning and Inference,2006,136:942-961. [3] 李拂晓,田铮,陈占寿.随机系数自回归模型变均值点在线监测与应用 [J].控制理论与用,2012,29(4):497-502.
Li F X,Tian Z,Chen Z S.Online monitorring of mean change point in a random coefficient autoregressive model [J].Control Theory & Applications,2012,29(4):497-502.
[4] Tjiong J.Reestimating UK sppraisal values for Nonwork travel times savings using random coefficient logit model [J].Transportation Research Procedia,2015,8:50-61.
[5] Feng G H,Zhang X H.Returns to scale at large banks in US:A random coefficient stochastic frontier approach [J].Journal of Banking & Finance,2014,39(4):135-145.
[6] Schmelter T,Benda N,Schwabe R.Some curiosities in optimal designs for random slopes [C]//Advances in ModelOriented Design and Analysis.Heidelberg:Physica,2007:189-195.
[7] Schwabe R,Schmelter T.On optimal designs in random intercept models [C].Proceedings of the Fifth International Conference on Mathematical Statistics,Smolenice 2006.Tatra Mountains Mathematical Publications,2008,39:145-153.
[8] Debusho L K,Haines L M.Voptimal and Doptimal population designs for the simple linear regression model with a random intercept term [J].Journal of Statistical Planning and Inference,2007,138:1116-1130.
[9] 程靖,岳荣先,刘欣.两变量随机截距模型的最优设计 [J].数理统计与管理,2011,30(3):504-511.
Cheng J,Yue R X,Liu X.Optimal designs of bivariable linear models with random intercepts [J].Journal of Applied Statistics and Managemen,2011,30(3):504-511.
[10] 程靖,岳荣先.两变量随机系数回归模型的最优设计 [J].应用概率统计,2012,28(3):225-234.
Cheng J,Yue R X.Optimal designs of bivariable random coefficient regression models [J].Chinese Journal of Applied Probability and Statistics,2012,28(3):225-234.
[11] Cheng J,Yue R X,Liu X.Optimal designs in random coefficient regression models with heteroscedastic errors [J].Communications in StatisticsTheory and Methods,2013,42(15):2798-2809.
[12] Gra′Bhoff U,Doebler A,Holling H,et al.Optimal design for linear regression models in the presence of heteroscedasticity caused by random coefficients [J].Journal of Statistical Planning and Inference,2012,42(5):1108-1113.
[13] Liu X,Yue R X,Chatterjee K.Roptimal designs in random coefficient regression models [J].Statistics & Probability Letters,2014,88(5):127-132.
(責任编辑:冯珍珍)
关键词: A-最优设计; 二次回归; 随机系数; 恒等设计
中图分类号: O 212.6 文献标志码: A 文章编号: 10005137(2017)02019505
Abstract: Aoptimal identical design of quadratic random coefficient regression model on the design domain of [0,1] is constructed in this paper.Loewner order character of Aoptimal criterion is proved in the paper and it is proved that Aoptimal identical design of quadratic random coefficient regression model could be obtained on three design points including the two extreme settings of the design domain of [0,1].Accurate result of Aoptimal identical design of quadratic random coefficient regression model is given in the paper.The result shows that Aoptimal identical design of quadratic random coefficient regression model does not depend on the variances of the random effects.The result also shows that the third spectral point of Aoptimal design is near the midpoint of the design domain of [0,1] and it′s weight coefficient of Aoptimal design is near 0.5.
Key words: Aoptimal design; quadratic regression; random coefficient; identical design
0 引 言
随机系数模型在生物学、心理学、经济学和药代动力学等领域的研究中被广泛应用,这些研究的目的往往不是了解个体自身的特性,而是个体所在总体的特性,此时将个体效应引入模型可大大提升模型的精度.早在20世纪90年代Liski等[1]就应用随机系数模型描述了林地类型、林分密度、气候以及遗传等因素对木材的影响,Pena等[2]则将随机系数模型应用于质量检测.近期也有很多关于随机系数回归模型的研究成果,李拂晓等[3]将随机系数自回归模型的变值点应用于股票价格的监测;Tjiong[4]采用随机系数Logit回归模型重新评估了英国非工作行程时间节省的评估指标;Feng & Zhang[5]采用随机系数的随机前沿方法研究了1997~2010年间美国大型银行的规模收益.
随机系数模型的最优设计近十几年来受到越来越多的重视,Schmelter等[6],Schwabe & Schmelter[7]分别讨论了随机截距模型和随机斜率模型在单位设计域上的最优设计;Debusho & Haines[8]针对具有随机截距的回归模型给出了均值参数在离散设计域上的D-最优和V-最优设计;程靖和岳荣先[9-10]讨论了两变量随机系数回归模型的最优设计;Cheng & Yue[11]获得了一阶异方差随机系数回归模型的几类最优设计;Grabhoff等[12]研究了由随机系数引起异方差的线性回归模型的最优设计轨迹的几何形状;Liu等[13]研究了随机系数回归模型的R-最优设计.
随机系数回归模型存在较为复杂的方差-协方差结构,已有的成果多集中在对低阶随机系数回归模型最优设计的研究.本文作者以一元二次随机系数回归模型为研究对象,讨论其在单位设计域上的A-最优设计.首先证明了A-最优设计准则满足偏序性质,进而证明了一元二次随机系数回归模型的A-最优设计可以在包含设计域两个端点0,1的3个设计点上获得,并给出了A-最优设计的精确结果.结论表明,一元二次随机系数回归模型的A-优设计不依赖与随机效应项的方差.
在二次随机系数回归模型中A-最优设计不依赖于随机效应项的方差,可以在包含0,1两个端点在内的3个设计点上获得,且第三个设计点在中点0.5附近,在该点上有接近0.5的权重.
参考文献:
[1] Liski E P,Mandal N K,Shah K R,et al.Topics in optimal design [M].New York:SpringerVerlag,2002.
[2] Pea D,Yohai V J.A Dirichlet random coefficient regression model for estimating attribute weights in quality indicators [J].Journal of Statistical Planning and Inference,2006,136:942-961. [3] 李拂晓,田铮,陈占寿.随机系数自回归模型变均值点在线监测与应用 [J].控制理论与用,2012,29(4):497-502.
Li F X,Tian Z,Chen Z S.Online monitorring of mean change point in a random coefficient autoregressive model [J].Control Theory & Applications,2012,29(4):497-502.
[4] Tjiong J.Reestimating UK sppraisal values for Nonwork travel times savings using random coefficient logit model [J].Transportation Research Procedia,2015,8:50-61.
[5] Feng G H,Zhang X H.Returns to scale at large banks in US:A random coefficient stochastic frontier approach [J].Journal of Banking & Finance,2014,39(4):135-145.
[6] Schmelter T,Benda N,Schwabe R.Some curiosities in optimal designs for random slopes [C]//Advances in ModelOriented Design and Analysis.Heidelberg:Physica,2007:189-195.
[7] Schwabe R,Schmelter T.On optimal designs in random intercept models [C].Proceedings of the Fifth International Conference on Mathematical Statistics,Smolenice 2006.Tatra Mountains Mathematical Publications,2008,39:145-153.
[8] Debusho L K,Haines L M.Voptimal and Doptimal population designs for the simple linear regression model with a random intercept term [J].Journal of Statistical Planning and Inference,2007,138:1116-1130.
[9] 程靖,岳荣先,刘欣.两变量随机截距模型的最优设计 [J].数理统计与管理,2011,30(3):504-511.
Cheng J,Yue R X,Liu X.Optimal designs of bivariable linear models with random intercepts [J].Journal of Applied Statistics and Managemen,2011,30(3):504-511.
[10] 程靖,岳荣先.两变量随机系数回归模型的最优设计 [J].应用概率统计,2012,28(3):225-234.
Cheng J,Yue R X.Optimal designs of bivariable random coefficient regression models [J].Chinese Journal of Applied Probability and Statistics,2012,28(3):225-234.
[11] Cheng J,Yue R X,Liu X.Optimal designs in random coefficient regression models with heteroscedastic errors [J].Communications in StatisticsTheory and Methods,2013,42(15):2798-2809.
[12] Gra′Bhoff U,Doebler A,Holling H,et al.Optimal design for linear regression models in the presence of heteroscedasticity caused by random coefficients [J].Journal of Statistical Planning and Inference,2012,42(5):1108-1113.
[13] Liu X,Yue R X,Chatterjee K.Roptimal designs in random coefficient regression models [J].Statistics & Probability Letters,2014,88(5):127-132.
(責任编辑:冯珍珍)