论文部分内容阅读
为了研究粗糙集理论中属性约简问题,给出了一种属性相对重要度定义,证明了其合理性,并将它应用到基于遗传算法的约简算法中,提出一种启发式遗传算法。算法采用修正策略保证群体进化收敛于最小约简,同时引入属性相对重要度作为启发信息,加快算法的收敛速度。对算法进行的时间复杂度和完备性分析以及数值实验表明,基于遗传算法的粗糙集属性约简算法具有完备、快速收敛等特点。