论文部分内容阅读
为改善高斯噪声条件下图像去噪性能,基于低秩理论,提出基于伽马范数最小化的图像去噪算法。所提算法对噪声图像重叠分块,基于结构相似性指数自适应搜索与当前图像块若干最相似非局部图像块以组成相似图像块矩阵,进而利用非凸伽马范数无偏近似秩函数以构建低秩去噪模型,并基于凸优化理论求解所得低秩去噪优化问题,重组所得去噪图像块以获得最终去噪图像。与PID,NLM,BM3D和NNM等主流去噪算法相比,实验结果表明,所提算法可有效消除高斯噪声,且可较好地恢复原始图像细节。