论文部分内容阅读
目的:利用卷积神经网络(convolutional neural network,CNN)算法构建基于临床图像的基底细胞癌和色素痣的智能辅助诊断模型。方法:首先,基于湘雅医学大数据平台构建一个大规模的以中国人种为主的皮肤疾病临床图像数据集——湘雅皮肤疾病数据集;在此数据集的基底细胞癌和色素痣的子集上评估5种主流CNN模型(ResNet50,InceptionV3,InceptionResNetV2,DenseNet121,Xception)的分类性能;以热力图的形式分析模型诊断结果的依据;将最优的C