论文部分内容阅读
为克服现有神经网络预失真方法复杂度高、易陷人局域最小等缺陷,提出一种正交差分进化磷虾群(ODEKH)与neuron—by-neuron(NBN)算法联合优化实数固定延时全连接级联神经网络(RVFTDFCCNN)的高功率放大器预失真方法。采用RVFTDFCCNN对预失真系统中的预失真器和逆估计器进行建模,通过ODEKH算法进行全局搜索获得RVFTDFCCNN的初始化参数,再用NBN算法对RVFTDFCCNN进行训练,同时根据复合函数求偏导数的链式规则,从2个层次对NBN算法中的Jacobian矩阵元素计算进