基于道路特征信息的车道结构化解析

来源 :北京航空航天大学学报 | 被引量 : 4次 | 上传用户:whywhatyou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高速道路动态执法要求车道检测算法能够结构化解析道路,但是基于传统手工设计特征的车道检测算法准确率和召回率不足,而基于深度学习的算法又对计算资源要求太高,因此提出基于道路特征信息的车道结构化解析算法。利用边缘点的梯度统计信息筛选Hough空间的候选点,用动态规划的方法在剩余的Hough空间候选点中寻找最合理的车道线组合,能够在较少计算资源的平台上准确地检测到道路上的全部车道。在自有数据的检测实验中,所提算法能够准确定位结构化和非结构化道路;在对比实验中,所提算法在准确率、召回率和计算速度上均比同类算法
其他文献
针对当前面向视频专网的网络安全态势评估中缺乏一套完善的指标体系问题,对构建网络安全态势指标体系进行了研究.首先,重点对视频专网面临的网络安全风险进行了研究与分析;然
根据车辆重识别中区域置信度不同,提出了基于高置信局部特征的车辆重识别优化算法。首先,利用车辆关键点检测获得对应的多个关键点坐标信息,分割出车标扩散区域和其他重要的局部区域。根据车标扩散区域的高区分度特性,提升局部区域的置信度。使用多层卷积神经网络对输入图片进行处理,根据局部区域分割信息,对卷积得到的特征张量进行空间维度上的切割,获得代表全局信息和关键局部信息的特征张量。然后,通过全连接层特征张量转
针对类内干扰影响基于个体人员特征目标跟踪算法的精确性和鲁棒性问题,分析当前跟踪算法在个体人员跟踪方面存在的不足,提出了利用语言先验知识引导辅助跟踪器的方法。在视觉跟踪器的基础上增加语言引导分支,对跟踪目标产生注意力,从而减少对类内干扰的影响。利用位置置信度进行回归目标框定位的方法解决基于孪生网络目标跟踪算法中利用分类置信度定位候选目标框的局限性,实现跨模态信息融合提升特定目标跟踪的精度。为提升所提