论文部分内容阅读
基于统计学习理论中的结构风险最小化原理,从理论上给出了神经网络的结构设计方法和实现过程。该方法能自适应地扩展神经网络的容量,从而完成网络的结构设计,并且在有限样本的情况下,阳大限度地提高网络的训练精度和泛化能力,进而提高神经网络预测结果的可靠性。此外,本方法可使神经网络同时具有多种类型的特性函数,增强了网络的信息处理能力。文中给出了该方法在大庆油田某开发区块储层油气检测的应用实例。