论文部分内容阅读
脱硝反应器入口NO_X浓度的及时、准确测量,对精确调节喷氨量、控制氮氧化物的排放至关重要。针对NO_X气体分析仪测量存在的精度差、滞后性等问题,基于传统云理论,并结合径向基函数(RBF)神经网络,提出了改进的云自适应粒子算法(CPSO)-RBF神经网络的测量模型。利用云模型理论中云滴具有随机性、稳定倾向性等特点,提出了一种新型分段式自适应调整粒子群惯性权重算法。利用此优化算法,对神经网络参数进行优化,提高了测量模型的精度。将该模型应用于SCR反应器入口的NO_X含量测量中,实例仿真表明,改进算法优化