论文部分内容阅读
本文对近十五年多达17万笔高频交易数据研究发现,早晨9:30股市开盘期间收益回报显著为负值,而在下午3:00收盘前的5分钟集合竞价阶段的收益回报显著为正值,称这种现象为“首尾5分钟现象”。并且日内收益数据具有较为显著的季节效应或周期效应,本文首次提出利用具有季节效应的SVJt—S模型对上证综合指数的5分钟高频交易数据进行建模,并给出模型的两步估计方法。由于高频随机波动建模时的数据量巨大、计算负荷严重,模型的估计、评价以及预测评价方法都需进行相应的改进,本文主要通过APF方法计算边际似然和BF进行模型比较,