【摘 要】
:
Carbon nanotubes (CNTs) have been far and wide employed as the counter electrodes (CEs) in dye-sensitized solar cells because of their individual physical and chemical properties.However,the tech-niques available now,such as chemical vapor deposition,arc
【机 构】
:
State Key Laboratory of Fine Chemicals,Liaoning Key Laboratory for Energy Materials and Chemical Eng
论文部分内容阅读
Carbon nanotubes (CNTs) have been far and wide employed as the counter electrodes (CEs) in dye-sensitized solar cells because of their individual physical and chemical properties.However,the tech-niques available now,such as chemical vapor deposition,arc discharge and laser ablation for synthesizing CNTs,commonly suffer from rigorous operations and complicated steps,which make the process difficult to be controlled.Herein,we present a simple and facile glutamic acid-assisted hydrothermal recrystal-lization strategy to construct bamboo-like CNTs (GHP-BC-x).Generally,the conventional organic dye 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) is used as a precursor and glutamic acid efficiently promotes the recrystallization of the perylene cores\' planar π-conjugated system in PTCDA under hydrothermal conditions and then self-assembles into one-dimensional nanorods with improved crystal-lization degree,finally resulting in the morphology of bamboo-like CNTs after carbonization.When applied as the counter electrodes,the GHP-BC-3 displays a remarkable power conversion efficiency of 8.25%,benefiting from the superb electrical conductivity and mass transfer dynamics,superior to that of Pt CE (7.62%).
其他文献
采用Gleeble-3500型热模拟试验机对Al-Mg-Si-In合金进行热压缩实验,温度范围为350~500℃,应变速率范围为0.001~1 s-1,分析变形温度、变形速率对该合金热变形过程中流变应力的影响,并建立了合金的本构方程和热加工图,结合金相显微镜对热压缩变形的组织进行研究.测试结果表明:随着变形温度的降低或应变速率的加快,流变应力和峰值应力升高,合金的动态软化机制以动态回复为主,难以发生动态再结晶;合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为180.84 kJ/
采用静态失重、极化曲线、交流阻抗(EIS)方法测试席夫碱自组装膜在3.5%(质量分数)NaCl溶液中对铜的缓蚀作用,考察了浓度和时间两个因素.结果表明,当浓度为15 mmol/L,组装时间为14 h时,合成的缓蚀剂缓蚀性能较好,缓蚀率可达99.89%.表面形貌分析结果表明,席夫碱化合物在铜表面形成簇状物质.拉曼光谱分析结果表明,席夫碱通过咪唑环和C=N键垂直吸附于金属表面.光学接触角测量结果表明,缓蚀剂表面不易被浸润,疏水性较好.
通过脱甲基化改性提高酶解木质素酚羟基含量,以增加其环氧化反应活性,并于碱性条件下与乙二醇二缩水甘油醚(EGDE)反应合成木质素环氧接枝物(EPDL);将其作为交联剂与大豆蛋白复合制备高性能绿色大豆蛋白胶黏剂.采用核磁共振磷谱(31 P-NMR)以及红外光谱(FTIR)等分析手段对脱甲基木质素(DL)及其EPDL进行分析表征,研究了木质素脱甲基化前后羟基含量、接枝物环氧值及其化学结构的变化规律,考察了EPDL对大豆蛋白胶黏剂耐水胶合性能的影响.结果表明:脱甲基化改性明显提高了木质素羟基含量,其羟基含量较原木
The coal (syngas)-to-ethylene glycol (CTEG),is contaminated with the naughty impurity 2-Methoxyethanol (ME) generated during the hydrogenation stage,which affect the quality of EG for fiber-grade polyester production.Distillation,is the employed separatio
Carbon dots (CDs) have become popular nanomaterials in biomedical and agricultural fields.Herein we synthesized multifunctional CDs which showed anti-cancer and anti-fungal activities.The low cytotoxi-city,stable fluorescence and high photothermal convers
A series of ZSM-5@MCM-41 core-shell composite materials prepared via a multi-cycle-sol-gel coating strategy is investigated as the catalyst for benzene alkylation with ethylene,in which both ethylbenzene and para-diethylbenzene (p-DEB) are aimed as the ta
With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery research
Steam pretreatment was employed to disrupt microalgal cells for lipids extraction.Effects of steam pre-treatment on microstructure of microalgal cells were investigated through scanning electron microscopy(SEM) and transmission electron microscopy (TEM).E
In the chemical looping with oxygen uncoupling (CLOU) process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the
Under high-temperature batch fluidized bed conditions and by employing Juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion