论文部分内容阅读
主成份分析对高维数据进行维数约简可有效提高聚类算法的性能,但这种方法容易丢失部分对聚类具有贡献的成份.为在维数约简的同时保留对聚类具有贡献的成份,提出一种维数约简与聚类交互进行的迭代算法.每次迭代可表示为约束优化问题,并可求解此优化问题的解析解,进而给出相应的迭代聚类算法,称之为基于约束主成份分析的本文聚类.在Reuter21578、WebKB文档集上的实验结果表明,文中方法与k-均值聚类、非负矩阵分解聚类和谱聚类相比具有较好的性能.