论文部分内容阅读
利用基于量子位测量的二进制量子遗传算法(QGA)对连续问题进行优化时,频繁的解码运算严重降低了优化效率。针对该问题,提出一种基于量子位相位编码的QGA。该算法直接采用量子位的相位对染色体进行编码,利用量子旋转门实现染色体上相位的更新,通过Pauli-Z门实现染色体的变异,由于优化过程统一在[0,2π]n空间进行,因此对不同尺度空间的优化问题具有良好的适应性。以单级倒立摆T-S模糊控制器参数的优化设计为例进行仿真,证明该算法在搜索能力和优化效率方面的优势。