论文部分内容阅读
Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003, the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35°N and 36°N sections. Also, double warm cores exist above the main thermocline along the 36°N section. (2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. Additionally, the circulation structure caused by upwelling along the cold front and northeastward current along the coast in summer is the main reasons of double warm cores along the 36°N section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually, which is related to El Nino events. However, the
Based on the temperature data along 34 ° N, 35 ° N and 36 ° N sections in August from 1977 to 2003, the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35 ° N and 36 ° N sections. Also, double warm cores exist above the main thermocline along the 36 ° N section. (2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually, which is related to El Nino ev ents. However, the