论文部分内容阅读
针对现有车牌字符识别算法中存在识别时间长、正确率低的问题,提出了基于粗网格特征提取及RBF神经网络的车牌字符识别算法。该算法首先对车牌图像字符进行预处理,再将提取的车牌字符特征向量输入RBF神经网络进行训练,通过建立汉字字符、字母、字母/数字混合分类器分别对车牌字符信息进行识别,同时引入拒识别和易混字符细识别机制。实验表明,这种方法克服了BP神经网络易陷入局部最小值的问题,提高了识别的正确率,适合于对实时性要求较高的智能交通管理系统。