论文部分内容阅读
根据有界差分条件,提出了学习算法的有界差分稳定框架.依据新框架,研究了机器学习阈值选择算法,再生核Hilbert空间中的正则化学习算法,Ranking学习算法和Bagging算法,证明了对应学习算法的有界差分稳定性.所获结果断言了这些算法均具有有界差分稳定性,从而为这些算法的应用奠定了理论基础.