【摘 要】
:
同时定位和地图构建(SLAM)凭借其高能效和低功耗等特点在诸多领域应用前景广阔。然而,在传统的SLAM系统中仍存在一些问题:传统的视觉里程计中关键帧并不包含语义信息,移动机器人获取的图像信息较为单一,且在实际场景中关键帧总包含大量误匹配点和动态点。针对以上问题,本文提出一种语义SLAM思路。首先,为了能够匹配到正确且对应的特征点,摒弃动态点和误匹配点的干扰,提出了一种基于Lucas-Kanade光
论文部分内容阅读
同时定位和地图构建(SLAM)凭借其高能效和低功耗等特点在诸多领域应用前景广阔。然而,在传统的SLAM系统中仍存在一些问题:传统的视觉里程计中关键帧并不包含语义信息,移动机器人获取的图像信息较为单一,且在实际场景中关键帧总包含大量误匹配点和动态点。针对以上问题,本文提出一种语义SLAM思路。首先,为了能够匹配到正确且对应的特征点,摒弃动态点和误匹配点的干扰,提出了一种基于Lucas-Kanade光流法的相邻帧特征状态判别法,将这项功能作为新的线程加入ORB-SLAM3的视觉里程计部分,完成对部分传统
其他文献
自动驾驶车辆的自动化驾驶程度越高,对高精地图的要求越高。智能化的高精地图能够为L5级别自动驾驶车辆提供所需地图数据,是未来高精地图发展的重要方向。基于目前高精地图的构建方法,本文首先提出多智能体协同高精地图构建的定义,分析其构建框架。然后,对多智能体数据采集路径规划、多源异构一体化数据融合与表达、道路场景认知、智能高精地图融合、智能高精地图更新等关键技术进行了研究,提出了可行的技术方案。最后,分析
交叉口是构成道路网络的基础与核心要素,起到了连接道路和承载转向的重要作用。在城市路网中,交叉口不仅数量众多、形态多样,而且结构复杂、大小不一。单一数据源对于道路交叉口的描述能力有限,难以做到道路交叉口的全面、精确识别。为此,本文设计了一种从车辆轨迹与遥感影像中识别道路交叉口的多元集成方法。首先,集成形态学处理、密度峰值聚类与张量投票提取种子交叉口,将其作为小样本集;然后,据此采用协同训练机制,分别
基于激光同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,不仅能够实现车辆在未知环境下的实时定位,还能高效地获取环境的三维地理空间信息,近年来受到了无人驾驶领域的广泛关注。在几何结构匮乏的隧道中,仅依赖几何信息无法配准点云,因此传统激光SLAM方法难以在隧道中应用。为解决这一问题,本文在LOAM的基础上,提出一种点云强度信息增强的改进
针对地下停车场环境GPS信号缺失的问题,本文在环视特征地图构建的基础上,提出基于二阶马尔科夫模型的粒子滤波定位算法(Markov model-particle filter, MM-PF),实现智能车在地下停车场环境中的高精度定位。在该模型中,环视特征地图节点被定义为粒子,查询图像被定义为观测数据。在状态转移过程中,引入二阶马尔可夫模型,对短时间车辆运动进行建模,构建状态转移模型。利用图像的全局特
为了提高移动机器人的定位精度,提出一种双目视觉与惯导融合的视觉SLAM算法。在视觉SLAM前端部分,为了保持直接法计算速度快及特征法精度高的特点,提出一种融合直接法和特征法的半直接法双目视觉里程计。在后端优化阶段,将视觉数据与IMU数据相互融合,在滑动窗口中以非线性优化的方式构建误差函数,优化位姿计算精度。在EuRoc数据集中对本文提出的算法进行试验验证。结果表明,与开源的视觉惯导融合的SLAM系