【摘 要】
:
长期以来域外国家对中俄实施各种敌对抵近侦察(HCR),这种现象愈演愈烈,并已经提升到“侦察威慑”的理论层次,且呈现体系化、智能化的发展趋势。分析了HCR的威胁、效能机理、技术原理、认知局限性,以及DHCR(拒止敌对进近侦察)传统措施的局限性和认知误区。以电子侦察在电子战中的应用和HCR/DHCR中的雷达反侦察为例,从夺回DHCR中的制电磁权及遏制HCR任务的角度出发,针对性地提出了电磁域主动防御的
论文部分内容阅读
长期以来域外国家对中俄实施各种敌对抵近侦察(HCR),这种现象愈演愈烈,并已经提升到“侦察威慑”的理论层次,且呈现体系化、智能化的发展趋势。分析了HCR的威胁、效能机理、技术原理、认知局限性,以及DHCR(拒止敌对进近侦察)传统措施的局限性和认知误区。以电子侦察在电子战中的应用和HCR/DHCR中的雷达反侦察为例,从夺回DHCR中的制电磁权及遏制HCR任务的角度出发,针对性地提出了电磁域主动防御的新理论。结合DHCR任务,针对性地提出了CRJ(反侦察干扰)的新战术任务类型,为DHCR体系化奠定理论基础。
其他文献
笔者对儿童绘画的现状及表现能力进行了调查研究。通过对不同年龄、不同性别的幼儿绘画能力的发展情形,来呈现幼儿绘画表现能力的发展状况。本文结合教学实践,分析了幼儿绘画作品的表现,并且提出了一些针对性的建议。阐述了如何抓住时机,加强与幼儿语言交流、丰富幼儿的生活经验、发现幼儿的创造力、提高教学效率、丰富幼儿绘画表现的能力。
基于集成电路的不断发展,以分子为单元来建构各种电子器件已成为元件不断小型化的有效手段之一。随着理论方法和实验工艺的提高和创新,利用电子的电荷和自旋双重属性设计制备分子自旋电子器件成为可能。与传统的硅基电子器件相比,分子自旋电子器件具有能耗低、响应速度快、集成度高等优势,使得其在信息化的新时代受到研究人员的广泛关注。在分子自旋电子器件发展过程中,石墨烯因其优异的导电和光学等性能成为理想的电极材料之一
近年来,超快光纤激光器在光电子学、超快光子学、光通信等几个领域引起了研究人员极大的兴趣。在获得超快激光方面,目前常采用的方式有主动锁模和被动锁模两种方式。主动锁模包括声光调制和电光调制两种锁模方式,需要在激光腔内加入调制器件,可以获得能量更高,更加稳定的脉冲激光输出。相比于用主动锁模的方式设计的激光器,被动锁模光纤激光器由于具有成本低、结构紧凑、无需额外驱动等优点也引起了越来越多的关注。到目前为止
热活化延迟荧光(TADF)材料作为第三代电致发光材料,能够实现100%的激子利用率,为电致发光领域带来了突破性进展,并且以其轻薄、可弯曲的特点成为有机发光二极管(OLED)中的新型发光材料。具有TADF特性的发光分子不断发展,越来越多高效的TADF分子被合成并报道,并具有一些特殊的性质如白光发射、聚集诱导发光等,其中具有圆偏振发光(CPL)性质的TADF分子引起了关注。圆偏振光具有提高图像对比度、
固体氧化物燃料电池(SOFC)是一种具有发展前途的绿色能源转换装置。按照传输的离子种类不同,SOFC主要划分为质子传导的SOFC(P-SOFC)和氧离子传导的SOFC(O-SOFC)。考虑到节约经济成本和防止材料在高温下的降解,使得SOFC在中间温度(500-800℃)下的应用受到人们的青睐。然而,降低温度会严重阻碍材料的某些性能,例如P-SOFC中电解质的质子传输性能、O-SOFC中阴极的氧还原
二维材料的原子级厚度、表面无悬挂键等特点,使其具有独特的电子学、光学和力学特性,在新一代智能电子、光电子及储能器件等领域有巨大的应用前景。近年来,新兴的二维材料层出不穷,在计算模拟中通过对它们电子性质、磁性的研究,可以为实验和应用研究提供指导。本文利用密度泛函理论方法研究了以卟啉为前驱体合成的新型卟啉基低维材料(金属-N4碳基材料、金属-N4碳基纳米带、二维金属卟啉有机框架)的磁性和电子性质,采用
随着新世纪数学课程和教学的改革创新,为了培养学生的创新意识和应用意识,提高学生解决问题的能力,重视师生交互主体关系的“课题学习”教学形式在中学阶段逐步展开。本文通过学习课题学习的相关理论知识、开展教学实践和师生调查访谈,归纳总结出高中现阶段开展课题学习出现的问题,并对此提出一些切实可行的教学策略。本文阐述了课题学习的国内外时代发展背景,揭示了数学课题学习的理论基础和价值,提出了在交互主体视角下开展
锌离子是酶和结构蛋白的活性成分,可以调节免疫系统、细胞增殖和生长等,对生物体具有非常重要的作用,所以高选择性地识别和检测锌离子,对化学、生物学、临床医学和农学等领域具有非常重要的意义。基于双光子吸收理论开发出来的双光子荧光显微技术可以对锌离子进行高效的检测,捕捉其的浓度、含量等信息。在双光子荧光显微技术中,双光子荧光探针是核心部分,它是结合探测底物和产生光信号的本体。一个良好的双光子探针可以减小环
有机材料与硅表面的共价键合作为一种连接生物分子与微电子学的很有发展前景的方法,一直是表面科学中最有吸引力的课题之一。过去几十年来,硅凭借其强度高、热膨胀系数小、导电性好等优异性能,在微电子学领域发挥了重要作用。然而,随着能源和信息技术的迅速发展,人们对传统半导体材料的光学和电学性能提出了更高的要求。因此,研究人员利用有机分子对硅表面进行修饰,将有机分子独特的光学、电学和生物学等功能移植到半导体表面
本文采用物理气相沉积方法构造了两种基于拓扑绝缘体范德瓦尔斯异质结构的光电探测器。之后研究了它们在近红外区域的光学探测能力。研究内容主要包括以下两个方面:(1)基于Bi2Te3/Ge异质结构光电探测器众所周知,在推进信息时代的过程中,半导体材料硅发挥着不可或缺的作用。然而,锗作为第一代半导体材料之一,在电子技术早期的晶体管和集成电路的发展中发挥着重要的作用。目前,锗被用作世界上第一个晶体管的衬底材料