论文部分内容阅读
为减少支持向量机(SVM)的计算负担,提高运算效率,并保证分类精度,提出一种结合投影与近邻操作的支持向量快速筛选方法.该方法利用Fisher投影轴的全局特性将其作为SVM最优分类面的近似法方向,在该方向快速筛除大量非支持向量,将分类边界附近的样本集作为备选支持向量集,同时为解决投影操作未考虑样本局部结构信息造成的误删支持向量的问题,结合近邻操作回选样本空间中备选支持向量的近邻样本更新扩充备选支持向量集,以该子集中的样本作为SVM的输入.在多个UCI标准数据集上的实验结果表明,该方法在充分保证分类精度的前提