论文部分内容阅读
在分析基于脉冲耦合神经网络时间序列的图像检索算法的基础上,提出一种新的基于脉冲耦合神经网络的图像检索方法。脉冲耦合神经网络是第三代人工神经网络,能够很好地将二维图像的特征提取成一维的矢量值,而且利用脉冲耦合神经网络提取图像特征时具有平移、旋转、尺度和扭曲不变性。新算法针对灰度图像,利用脉冲耦合神经网络模型对图像进行分解,从而生成与原图像相关的二值图像序列,然后针对二值图像序列中的每一幅二值图像,计算反映其边缘信息的欧拉数,由此构造一个一维的特征矢量。在进行图像检索的时候,使用欧式距离进行图像的相似度