论文部分内容阅读
针对无人机在城市空域环境和密集交通流下的避撞决策问题,提出马尔科夫决策过程(MDP)和蒙特卡洛树搜索(MCTS)算法对该问题进行建模求解。蒙特卡洛树搜索算法在求解过程中为保证实时性而使其搜索深度受限,容易陷入局部最优,导致在含有静态障碍的场景中无法实现避撞的同时保证全局航迹最优。因此结合跳点搜索算法在全局规划上的优势,建立离散路径点引导无人机并改进奖励函数来权衡飞行路线,在进行动态避撞的同时实现对静态障碍的全局避撞。经过多个实验场景仿真,其结果表明改进后的算法均能在不同场景中获得更好的性能表现。特别是在凹