论文部分内容阅读
针对复杂背景近岸舰船检测与细粒度识别难题,提出了一种基于深度学习的新型端到端目标识别框架,可有效检测与识别任意方向的舰船目标。针对舰船目标短边尺度较小问题,提出了角度致密化的预设框设置方法,提高了候选区域生成时的召回率;采用改进方位敏感型区域插值池化,减少了坐标量化误差,实现了舰船局部区域特征的精确建模;利用注意力机制下的全局与局部特征区域级融合方法,提升了区域特征的类别判别能力,解决了细粒度舰船识别难题;针对舰船样本稀缺性问题,使用迁移学习提升了模型性能。构建了一个含有25类近岸舰船目标的细粒度数