关于逆紧全纯映射刚性的一个注记

来源 :数学年刊:A辑 | 被引量 : 0次 | 上传用户:macrosoft
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文对某类广义Hartogs三角形上的逆紧全纯自映射证明了刚性定理,即逆紧全纯自映射必定为全纯自同构.同时完全刻画了其全纯自同构群,并且给出了关于其全纯自同构以及两个这类域之间逆紧全纯映射的分类。
其他文献
利用以极大函数表示的有关Sobolev函数的逐点不等式来构造全局的Lipschitz型检验函数得到了:在一定条件下,拟线性椭圆方程-divA(x,u,Du)=f(x)在grand Sobolev空间W^θp) 0(Ω)中的很弱解
考虑具有正负系数的连续变量的差分方程x(t)-x(t-γ)+P(t)x(t-т)-Q(t)x(t-σ)=0,其中P,Q∈C([t0,∞),R+),т,σ,γ∈(0,∞).本文给出了上述方程解的零点分布及方程所有解振
本文完全定出了局部环上辛群在一般线性群中的扩群.
对于将有限域上的自对偶基概念推广到了更一般的弱自对偶的情形,给出了有限域上存在这类正规基的一个充要条件:设q为素数幂,E=Fq^n为q元域F=Fq的n次扩张,N={αi=α^q^i|i=0,1,…,n-1)
一个有限非幂零群G称为PN-群,如果NG(P)是幂零的,对于每个素数p和每个满足P(∈)Z∞(G)的非正规子群p-子群P.本文将给出可解PN-群的结构和一些特征定理.
设R是环,(S,≤)是严格全序幺半群,且对任意s∈S都有0≤s.本文证明了环R是拟Baer环当且仅当R上的广义幂级数环[RS,≤]]是拟Baer环。