论文部分内容阅读
针对传统图像分割方法分割效率低下,遥感图像特征复杂多样,复杂场景下分割性能受到限制等问题,在基于U-Net网络架构的基础上,提出一种能够较好提取遥感图像特征并兼顾效率的改进U-Net模型.首先,以EfficientNetV2作为U-Net的编码网络,增强特征提取能力,提高训练和推理效率,然后在解码部分使用卷积结构重参数化方法并结合通道注意力机制,几乎不增加推理时间的前提下提升网络性能,最后结合多尺度卷积融合模块,提高网络对不同尺度目标的特征提取能力和更好地结合上下文信息.实验表明,改进的网络在遥感图像分割性能提升的同时分割效率也提高.