论文部分内容阅读
给出了在一个特殊坐标系中三阶流体的二维定常运动方程组.该坐标系中由无粘流体的势流确定,即以环绕任意物体的非粘性流动的流线为φ-坐标,速度势线为ψ-坐标,构成正交曲线坐标系.结果表明,边界层方程与浸没在流体中的物体的形状无关.第一次近似假定第二梯度项与粘性项和第三梯度项相比,可以忽略不计.第二梯度项的存在,将防碍第三梯度流相似解的比例变换的导出.利用李群方法计算了边界层方程的无穷小生成元.将边界层方程组变换为常微分方程组.利用Runge-Kutta法结合打靶技术求解了该非线性微分方程组的数值解.