一种高效的云平台热点预测方法

来源 :计算机应用研究 | 被引量 : 1次 | 上传用户:iloveyouguoran
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
云计算系统是一个高度动态的分布式计算环境,对系统中的节点负载进行实时监控和预测,是防止集群节点过热的主要途径。不同于传统方式基于原始信息来进行负载预测,提出了一种带人工干预的特征融合热点预测方法。首先,基于稀疏自编码网络对不同的性能指标进行特征提取来获得单性能特征;然后,基于特征融合模型和人工干预模型分别得到融合特征和人工特征;最后,利用上述三种特征来学习和训练神经网络模型,用于预测热点。在Google Cluster数据集上的实验表明,该方法能够显著地提升云平台热点预测的准确性,尤其在进行长时间跨
其他文献
信息化教学中,通过对教学资源重新设计,融入信息化教学平台及各种信息化手段,使整个教学过程体现以教师为主导,学生为主体的教学方式,并实行分层式培养。文中以“中断按键控
目的 探讨直肠癌造口患者围手术期的护理策略。方法 根据患者围手术期各个阶段的临床特点,有针对性地采取心理护理、一般护理等方法。结果 36例患者无一例发生并发症,且掌握了
<正> 不同国家的自然条件和技术条件不同,所得木材切削参数各异.因此,必须逐步建立起我国自己的一整套木材切削参数. 我所与东北林学院木机系协作,于一九七三年开始对木材切
由于中医文献内容繁杂数目庞大、专业术语词汇较多,且包含使用文言文、古人口语等多样的书写方式,使用通用领域的分词器进行分词的效果较差。为了解决这一问题,构建了基于BiLSTM-CRF的模型对中医领域的文献尤其是文言文文献进行分词,并在中医领域文献上对比了BiLSTM-CRF模型、BiLSTM模型及主流通用中文分词器jieba、Ansj的分词结果。结果表明基于Bi-LSTM-CRF模型的分词取得了更优
属性基加密(ABE)方案在云存储中得到了越来越广泛的应用,它能够实现细粒度的访问控制,但是现有的大多数ABE方案存在撤销方案效率低、开销大的问题。为了解决这一问题,提出一种更高效、细粒度的支持属性撤销的属性基加密方案。该方案将部分加解密运算外包给代理服务器,从而降低用户的加解密计算量。同时还提出了一种有效的属性撤销方法,该方法只需更新与撤销属性相关联的密文和用户密钥,所以属性撤销的代价很小。并结合
目的观察温补心肾方治疗慢性心衰的疗效。方法慢性心力衰竭患者随机分为治疗组37例和对照组36例。两组给予西医基础和对症治疗,治疗组加用温补心肾方,治疗前后主要观察心功能
以培养高质量人才和出高水平成果为学科中心工作。迄今培养出180多名博士,600多名硕士,1500多名学士。在科研方面,每年承担的科研项目包括国家自然科学基金、国家863项目、