论文部分内容阅读
针对ID3决策树生成法中存在的缺点,通过引用属性关联度和代价敏感学习,提出了一种基于属性关联度和代价敏感学习的决策树生成法。该方法利用粗糙集理论对条件属性进行约减,在构建决策树过程中,把属性的关联程度和性价比作为选择分裂结点的依据,利用改进的信息增益方法构建代价敏感决策树。试验结果表明,该方法在分类准确度和生结点总数量上比常用决策树生成方法优越。