论文部分内容阅读
针对深度学习跟踪算法训练样本缺少、训练费时、算法复杂度高等问题,引入高斯核函数进行加速,提出一种无需训练的简化卷积神经网络跟踪算法。首先,对初始帧目标进行归一化处理并聚类提取一系列初始滤波器组,跟踪过程中结合目标背景信息与前景候选目标进行卷积;然后,提取目标简单抽象特征;最后,将简单层的卷积结果进行叠加得到目标的深层次特征表达。通过高斯核函数加速来提高算法中全部卷积运算的速度,利用目标的局部结构特征信息,对网络各阶段滤波器进行更新,结合粒子滤波跟踪框架实现跟踪。在CVPR2013跟踪数据集上的实验表