【摘 要】
:
1.为什么要加强马克思主义执政理论建设? 理论是行动的先导,没有理论的实践必然陷入盲动。一个执政党要始终走在时代前列,就一刻也离不开科学理论特别是执政理论的指导。
1.
论文部分内容阅读
1.为什么要加强马克思主义执政理论建设? 理论是行动的先导,没有理论的实践必然陷入盲动。一个执政党要始终走在时代前列,就一刻也离不开科学理论特别是执政理论的指导。
1. Why should we strengthen the construction of Marxist ruling theory? Theory is the precursor of action. Without theoretical practice, it must inevitably fall into the blind hand. A ruling party must always walk in the forefront of the times, and at the moment can not be separated from the guidance of the scientific theory, especially the ruling theory.
其他文献
本文主要研究如下非线性二阶椭圆型方程组Dirichlet O-边值问题的正解的存在唯一性以及解的边界行为,在这里α
前馈型多层神经网络模型能逼近任意非线性函数。目前,己广泛应用于模式识别、语音识别、数据压缩等领域。BP算法作为其学习方式有效地解决了异或、T-C匹配问题,但BP网络的学
本文主要讨论Hardy(型)不等式以及含临界位势的椭圆型方程多重解的存在性,全文共七章。 第一章,建立了R~4中相应的Rellich不等式,证明了常数是最佳的,由此确定了临界位势
本文主要利用复方法考虑了一个平面上的高阶方程的边值问题和一个四维空间上的双曲方程的一个边值问题,并对解双曲方程有重要作用的双曲数和重复数用代数方法进行了研究,为进一
本文用欧拉格式法对一类连续捕食与被捕模型进行离散化,得到一类离散时间的捕食与被捕食模型。对这尖离散系统进行了定性分析,研究了系统正不动点的存在性及稳定性,并以离散时间
目前,由于实际问题的推动以及数学自身发展的深入,无穷维动力系统的研究已经成为动力系统领域中重要的研究课题之一.本文利用Galerkin方法,研究了一个具有非线性边界条件的梁的
本文主要研究分段连续型延迟微分方程(EPCA)数值解的稳定性,这类方程在物理、生物和控制中有着广泛的应用。 经典的分段连续型延迟微分方程包含了在一些区间上是常数的项,在
组合弹性结构在结构工程中有着广泛的应用.在已有工作的基础上,本文讨论了体和板刚接而成的简单组合弹性结构的有限元方法及其数值模拟.首先基于变分原理建立体板组合结构的
本文用复方法研究Clifford分析中两类边值问题和四元数空间中Pompeiu算子T的性质.在第一章,研究Clifford分析中一类广义正则函数的Plemelj公式和一个非线性边值问题,运用积分方
挖掘数据中蕴含的因果关系是自然科学研究的一个基本问题.近年来,尽管很多研究者致力于从可观测数据中寻找其中可能存在的因果关系,但是在高维数据集下,现时的因果发现算法依