论文部分内容阅读
针对1维非定常对流扩散方程,首先建立了1种2层有理型高阶紧致差分格式,其局部截断误差为O(h4+τ2)。然后采用 von Neumann 分析方法证明了该格式是无条件稳定的。由于在每个时间层上只涉及到3个网格点,因此可直接采用追赶法求解此差分方程。最后通过3个数值算例验证了方法的精确性和可靠性。数值结果表明:所述格式不仅能够适用于非定常对流扩散问题,而且能够较好地求解非定常纯对流问题或纯扩散问题,并且其计算效果均优于 Crank-Nicolson(C-N)格式和指数型高阶紧致(EHOC)差分格式。