论文部分内容阅读
探讨了基于大数据的定性数据流聚类优化模型,设计了一个函数作为评价聚类模型有效性的目标函数,同时考虑了聚类模型的确定性和与上一个聚类模型的连续性.根据概念漂移的检测指标,提出了一种综合检测指标和优化模型的定性数据流聚类结构演化趋势的检测方法.通过对几个真实数据集的实验研究,验证了该算法在定性数据流聚类中的有效性,并与现有的数据流聚类算法进行了比较.