论文部分内容阅读
功率器件易发生热击穿故障,为准确估计其运行温度,需建立器件的热分析模型。然而,当多个功率器件排布距离较近时,器件间的热耦合作用会导致模型中的热参数难以获取。为此,引入导热时间常数τ和温升变化率k两个热参数,建立了功率器件集总参数热模型;并提出通过径向基函数神经网络,对参数τ和k进行估计,克服模型热参数难以获取的问题。以单相全桥电路为对象,通过温升实验,对所提功率器件热模型的有效性进行了验证。