论文部分内容阅读
若对图G中任意一对距离为2的点x,y,存在u∈N(x)∩N(y),使得[u]包含于N[x]∪N[yl,则称G为半无爪图.许多关于无爪图的结果已经被推广到更大的图类——半无爪图,本文证明了下面的结果:(1)若G是半无爪图,x是G的一适宜点,G'为由G在x局部完备所得,则G'仍是半无爪图,但G'不一定是无爪图.(2)若G是半无爪图,则其闭包cl(G)是唯一确定的.并由(1)有推论:若G是半无爪图,则其闭包cl(G)仍是半无爪图.