论文部分内容阅读
针对L_1范数多核学习方法产生核权重的稀疏解时可能会导致有用信息的丢失和泛化性能退化、L_p范数多核学习方法产生核权重的非稀疏解时会产生很多冗余信息并对噪声敏感,提出了一种通用稀疏多核学习方法。该算法是基于L__1范数和L_p范数(p>1)混合的网状正则化多核学习方法,不仅能灵活地调整稀疏性,而且鼓励核权重的组效应,L_1范数和L_p范数多核学习方法可以认为是该方法的特例。该方法引进的混合约束为非线性约束,对此约束采用二阶泰勒展开式近似,并使用半无限规划来求解该优化问题。实验结果表明,改进后的方法在