论文部分内容阅读
The delay-probability-distribution-dependent robust stability problem for a class of uncertain stochastic neural networks (SNNs) with time-varying delay is investigated. The information of probability distribution of the time delay is considered and transformed into parameter matrices of the transferred SNNs model. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is obtained in the linear matrix inequality (LMI) format such that delayed SNNs are robustly globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability conditions are dependent on the probability distribution of the delay and upper bound of the delay derivative, and the upper bound is allowed to be greater than or equal to 1. Finally, numerical examples are given to illustrate the effectiveness and less conservativeness of the proposed method.