论文部分内容阅读
在考虑当前预期和波动性条件下,为了有效地捕获极端条件下收益率时间序列动态特征,提高VaR的度量精度,建立了基于高频数据的条件极值VaR模型。应用智能优化算法对条件极值分布的时变参数进行估计,考察了在不同样本容量分块下的条件极值VaR,并对VaR计算结果的精度进行了Kupiec-LR检验和动态分位数检验。研究结果表明,基于高频数据的条件极值分布较好地拟合了极端条件下的收益率特征,与McNeil提出的传统条件极值VaR相比,应用高频数据建立在条件广义极值分布基础上的条件极值VaR的Kupiec检验DQ检验值都