论文部分内容阅读
【摘 要】目的:观察去卵巢对大鼠膝关节软骨及软骨下骨的影响。方法:将48只3月龄雌性SD大鼠随机分为对照组和去卵巢组(OVX组),每组24只。对照组不做任何处理,OVX组行双侧卵巢切除术。术后4,8,12周每组随机处死8只,检测血液雌二醇及尿Ⅰ、Ⅱ型胶原C末端肽(CTX-Ⅰ、CTX-Ⅱ)水平,关节软骨行Mankin评分及软骨下骨行Micro-CT检查。结果:与对照组比较,术后4,8,12周OVX组雌二醇水平明显降低,CTX-Ⅰ水平明显增高,差异有统计学意义(P < 0.01);术后4周2组CTX-Ⅱ水平比较,差异无统计学意义(P > 0.05);术后8,12周OVX组CTX-Ⅱ水平明显高于对照组,差异有统计学意义(P < 0.01)。术后4,8周2组Mankin评分比较,差异无统计学意义(P > 0.05);术后12周OVX组Mankin评分较对照组增高,差異有统计学意义(P < 0.01)。术后4,8,12周OVX组骨体积分数、骨小梁厚度较对照组降低,骨小梁分离度较对照组增加,差异有统计学意义(P < 0.01或P < 0.05);术后4周2组间骨小梁数量比较,差异无统计学意义(P > 0.05);术后8,12周OVX组骨小梁数量较对照组降低,差异有统计学意义(P < 0.05)。结论:去卵巢使血清雌激素水平减少,从而导致大鼠膝关节软骨退变及软骨下骨骨质疏松。软骨下骨骨质疏松早于关节软骨的退变,其可能是关节软骨退变的始发因素。
【关键词】 骨关节炎;骨质疏松;去卵巢;关节软骨;软骨下骨;大鼠
【ABSTRACT】Objective:To observe the effect of ovariectomy on cartilage and subchondral bone of knee joint of rats.Methods:Forty eight three-month-old SD female rats were randomly divided into a control group and an ovariectomized group(OVX group),with 24 rats in each group.No treatment was done to the control group ,while the OVX group underwent bilateral ovariectomy.Four,eight and twelve weeks after operation,8 rats of each group were randomly killed to test the levels of blood estradiol,CTX-Ⅰ and CTX-Ⅱ.Mankin score was done to their articular cartilage and microscopic CT was done to their subchondral bone.Results:Compared with the control group,after four,eight and twelve weeks,the levels of estradiol obviously decreased and the levels of significantly increased in the OVX group,and the difference was statistically significant(P < 0.01).Four weeks after operation,the differences of CTX-Ⅱ levels of the two groups were not statistically significant(P > 0.05).Eight and twelve weeks after operation,the level of CTX-Ⅱ in the OVX group was significantly higher than that in the control group,and the difference was statistically significant(P < 0.01).Four and eight weeks after operation,the difference of Mankin score in the two groups was not statistically significant(P > 0.05).Twelve weeks after operation,the Mankin score of the OVX group was higher than that of the control group,and the difference was statistically significant(P < 0.01).Four,eight and twelve weeks after operation,the bone volume fraction and trabecular thickness of the OVX group decreased compared with those in the control group,and the degree of trabecular separation increased,the difference being statistically significant(P < 0.01 or P < 0.05).Four weeks after operation,the difference of the number of trabecular bone in the two groups was not statistically significant(P > 0.05).Eight and twelve weeks after operation,the number of trabecular bone in the OVX group decreased compared with that of the control group,and the difference was statistically significant(P < 0.05).Conclusion:Ovariectomy reduces the level of serum estrogen,resulting in cartilage degeneration and subchondral bone osteoporosis in rats.Subchondral bone osteoporosis is earlier than articular cartilage degeneration,which may be the starting factor of articular cartilage degeneration. 【Keywords】 osteoarthritis;osteoporosis;ovariectomy;articular cartilage;subchondral bone;rats
骨关节炎(osteoarthritis,OA)为一种慢性退行性病变,系由于雌激素下降、年龄、肥胖、局部生物力学异常等生物学及力学因素共同作用引起关节软骨退化损伤、软骨下骨重塑、骨赘形成等,又称为骨关节病、老年性关节炎、退行性关节炎等,多见于中老年人,临床主要表现为关节疼痛、肿胀、僵硬、畸形、活动受限等。随着人口老龄化,发病率逐渐增高,全球发病率约为4%~13%[1],且女性发病率高于男性,其形成原因众多,机制极其复杂。其中雌激素及雌激素受体与OA高度相关[2-3],通过增加雌激素水平可以减轻关节软骨退变[4]。以往观点认为,关节软骨细胞凋亡及细胞外基质的降解是OA重要病理变化,其实OA发生、进展过程可能是由于软骨下骨、软骨细胞、细胞外基质所组成的复合单元结构和功能失衡的结果。软骨下骨骨小梁的改变情况可以用来预测OA进展[5],软骨下骨重塑会使关节软骨的应力分布异常,过分的应力传导至关节软骨,加速关节软骨损伤[6-7]。研究发现,通过抑制软骨下骨的丢失,能够有效缓解关节软骨退变,其可能为OA治疗的重要靶点[8],所以软骨下骨在OA发病及进展过程中起着至关重要的作用[9-10]。本实验探讨去卵巢对SD大鼠关节软骨及软骨下骨的影响。
1 实验材料
1.1 实验动物 3月龄雌性SD大鼠48只,体质量为360~370 g,购于湖南省斯莱克景达实验动物有限公司,动物许可证号:SCXK(湘)2016-0002。实验动物饲养于南华大学动物实验室,使用许可证号:SYXK(湘)2010-0006。12 h间隔照明,自由摄食及饮水,环境温度为22~26 ℃,湿度为50%~60%。严格按照中华人民共和国《实验动物管理条例》进行实验动物相关工作。
1.2 主要试剂与仪器设备 血清雌二醇ELISA试剂盒(广州皓跃生物科技有限公司);尿液Ⅰ型胶原C末端肽(CTX-Ⅰ)、尿液Ⅱ型胶原C末端肽(CTX-Ⅱ)等ELISA试剂盒(北京生物科技有限公司);奥林巴斯光学显微镜(日本奥林巴斯株式会社);MSE Micro-Centaur Centrifuge微型台式离心机(日本Sanyo公司);显微CT(Micro-CT)(广州中科恺盛医疗科技有限公司)。
2 实验方法
2.1 实验分组与造模 采用随机生成数字表将48只大鼠分为对照组和去卵巢组(OVX组),每组24只。参照文献[11]对OVX组进行双侧卵巢切除术构建动物模型。术后3 d每组实验动物予以肌肉注射青霉素4万U,每日1次预防感染,术后任其自由活动,不固定大鼠。对照组不做特殊处理。
2.2 标本采集及处理 每组实验动物于术后4,8,12周处死前收集24 h尿液样本,离心后储存于-20 ℃环境中。随后使用脊髓脱臼法每组随机处死8只,眼眶取血约3 mL,于低温离心机以3000 r·min-1离心20 min,每份分3次用移液枪取上层血清共约600 μL,置于5 mL EP管中,于-80 ℃冰箱中保存。取左侧胫骨近端,轻柔分离软组织,生理盐水冲洗,切片后行番红固绿染色。取右侧胫骨近端置于40 g·L-1多聚甲醛中固定。
2.3 血清雌二醇及尿CTX-Ⅰ、CTX-Ⅱ检测 使用ELISA测定血清雌二醇及尿CTX-Ⅰ、CTX-Ⅱ等指标。
2.4 组织形态学观察及Mankin评分 对左侧胫骨近端切片后行番红固绿染色,观察2组SD大鼠膝关节组织形态学改变。按照改良Mankin评分标准[12],分别从软骨外观改变、软骨细胞数、着色情况、潮线形态改变等方面评价关节软骨损伤程度。其中0~1分为正常,2~5分为早期OA,6~9分为中期OA,10~14分为晚期OA。记分由3个独立观察者进行。
2.5 Micro-CT技术观察软骨下骨 将固定于40 g·L-1多聚甲醛大鼠右侧胫骨近端取出后置于Micro-CT设备中进行检测。分别从骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数量(Tb.N)、骨小梁分离度(Tb.Sp)等方面对软骨下骨行定量分析。Micro-CT的扫描相关参数:微焦斑X光源13~20 μm,电压10~90 KVp,最大功率80 W,空间分辨率50 μm,每层间距为15 μm,横截面视野90 mm,单次扫描长度120 mm。
2.6 统计学方法 采用SPSS 20.0软件进行统计分析。计量资料以表示,组间比较采用成组t检验。以P < 0.05为差异有统计学意义。
3 结 果
3.1 2组血清雌二醇及尿CTX-Ⅰ、CTX-Ⅱ水平比较 术后4,8,12周OVX组血清雌二醇水平明显低于对照组,差异有统计学意义(P < 0.01)。
术后4,8,12周,OVX组CTX-Ⅰ水平明顯高于对照组,差异有统计学意义(P < 0.01);术后4周2组CTX-Ⅱ水平比较,差异无统计学意义(P > 0.05);术后8,12周,OVX组CTX-Ⅱ水平明显高于对照组,差异有统计学意义(P < 0.01)。见图1、表1。
3.2 关节软骨形态学及Mankin评分比较 OVX组4周时关节软骨变化不明显;8周时关节软骨表面粗糙,软骨细胞过多,潮线模糊;12周时关节软骨表层破坏,裂隙增大、加深,软骨组织结构排列不规则,番红固绿染色加深,软骨细胞增多,潮线不完整;对照组关节软骨无明显变化。术后4,8周2组Mankin评分比较,差异无统计学意义(P > 0.05);术后12周OVX组Mankin评分较对照组增高,差异有统计学意义(P < 0.01)。见图2、表2。
3.3 2组软骨下骨定量分析及Micro-CT图像比较 术后4,8,12周OVX组较对照组BV/TV、Tb.Th降低,Tb.Sp增加,差异有统计学意义(P < 0.01或P < 0.05)。术后4周2组Tb.N比较,差异无统计学意义(P > 0.05);术后8,12周OVX组Tb.N较对照组降低,差异有统计学意义(P < 0.05)。见图3、图4。
4 讨 论
随着人口老龄化,OA发病率呈逐年上升趋势,我国女性发病率为10.3%,男性发病率为5.7%[13]。OA不但给患者带来生理上的疼痛、功能障碍,还导致焦虑、抑郁、社交障碍等,对人类健康造成严重影响,最终给家庭和社会医疗带来巨大的经济负担和压力。本病发生及进展机制十分复杂,因此对其机制进行探索具有重要的意义。
目前医学界普遍认为,关节软骨细胞外基质降解为OA的重要病理变化[14],关节软骨的退变受雌激素及雌激素受体影响。雌激素为一种类固醇激素,主要分为雌激素与孕激素两大类。女性除生殖系统外,体内许多组织器官都受雌激素影响,例如骨骼、泌尿系统、神经系统等。绝经后女性人群中OA发病率明显增高,一项流行病学调查显示,50岁以上女性OA发病率显著高于男性[15]。
Andersson等[16]发现,选择性雌激素受体调节剂能够抑制关节软骨退变及减轻OA关节炎症;Riancho等[17]发现,雌激素相关受体基因的表达情况与OA的严重程度密切相关;既往研究也证实,对大鼠进行去势能够复制OA模型[18]。以上研究均提示,雌激素受体及雌激素水平与OA高度相关。本实验发现,大鼠去势4周后雌二醇水平下降明显,此时作为关节软骨降解产物的尿CTX-Ⅱ水平开始增高,但OVX组关节软骨组织Mankin评分增高并不明显,翻红固绿染色也可见关节软骨变化不明显,提示SD大鼠在去卵巢4周时,关节软骨尚未发生明显的退变。8周时翻红固绿染色可见关节软骨表面开始出现轻度粗糙、软骨细胞增生、潮线模糊等方面变化,此时Mankin评分虽进一步增高,但与对照组比较差异无统计学意义(P > 0.05)。12周时关节软骨开始出现较为明显的OA病理表现,OVX组Mankin评分较对照组明显增高,差异有统计学意义(P ﹤ 0.01),说明通过对大鼠行去卵巢术,大约12周就能建立出成功的膝OA动物模型。本研究结果提示,对大鼠去卵巢后,血清雌激素水平明显下降,雌激素的缺乏可导致关节软骨退变。这与目前的研究一致[19]。
OA发生及进展机制复杂,单纯从关节软骨解释其机制欠妥当。随着国内外学者对OA研究的不断深入,软骨下骨开始逐渐受到关注。软骨下骨为薄层皮质骨,位于钙化软骨深部。软骨下骨作用在于维持关节的形态、吸收应力、缓冲震荡、为关节软骨提供营养、影响关节软骨新陈代谢等[20]。Muraoka等[21]发现,在关节软骨退变之前软骨下骨已发生异常改变,因此软骨下骨可能是OA重要治疗靶点。
大致可通过生物力学和生物学两方面对软骨下骨影响OA的发生及进展进行解释。OA中软骨下骨重塑极度活跃,软骨下骨的骨重塑包括骨吸收及耦联骨形成两方面,其中OA软骨下骨的骨重塑早期以骨吸收为主[22],且OA早期软骨下骨极易发生微损伤[23],反复微损伤启动骨重塑过程,引起过量的骨形成,最终导致OA晚期软骨下骨骨密度增加[24]。软骨下骨重塑失衡使其吸收应力能力降低,关节应力分布异常,从而导致关节软骨退变。RANKL/RANK/OPG信号通路为调节骨吸收的最后通路[25],参与调控OA患者软骨下骨的骨重塑过程[26]。雌激素能上调OPG表达[27],抑制前破骨细胞分化为成熟的破骨细胞,减轻软骨下骨吸收。尿CTX-Ⅰ被认为是使用最为广泛的胶原降解标志物之一,它属于骨重塑中的重要骨代谢指标,其水平可反映破骨细胞活性及软骨下骨骨吸收情况。本实验中,OVX组尿CTX-Ⅰ水平较对照组增高,提示雌激素缺乏后,破骨细胞活性增强,软骨下骨骨吸收增加。通过Micro-CT也发现,自4周开始OVX组软骨下骨骨小梁断裂、分布稀疏、厚度变薄、结构紊乱,并随时间推移呈现加重趋势。定量分析发现,4,8,12周的BV/TV、Tb.Th、Tb.N较对照组降低,Tb.Sp较对照组增高,提示通过去卵巢所导致的雌激素缺乏可使SD大鼠软骨下骨Tb.N、Tb.Th、密度等下降,软骨下骨发生质与量的变化,呈现出骨质疏松。结合目前国内外研究,我们认为雌激素缺乏可通过某种机制启动软骨下骨重塑,激活破骨细胞,促进软骨下骨骨吸收,使软骨下骨发生骨质疏松。另外,本研究发现术后4周时OVX组大鼠软骨下骨已经开始出现骨质疏松,此时关节软骨尚未发生退变,从软骨下骨及关节软骨两者开始出现病理变化的时间来看,不难发现软骨下骨的骨质疏松早于关节软骨的退变。于是我们推测先于关节软骨退变的软骨下骨骨质疏松导致软骨下骨硬度和强度改变,使关节软骨应力分布异常,最终通过异常的生物力学因素影响关节软骨功能,促进关节软骨退变。本实验结果提示,软骨下骨的骨质疏松在OA的发生及进展过程中扮演着重要角色。当然,软骨下骨还可通过复杂的生物学因素对关节软骨的退变产生影响。软骨下骨与关节软骨之间存在直接串联[28],两者之间物质的运输可以通过这些串联来完成。软骨下骨中过量的血管侵入关节软骨,会加速关节软骨内骨化。Wang等[29]發现,肿瘤坏死因子-α能上调LRG1表达,影响间充质干细胞迁移,促进软骨下骨血管生成及耦联骨形成,加速关节软骨损伤。Chen等[30]发现,OA患者软骨下骨SDF-1呈现出高表达,通过抑制SDF-1信号通路能够减轻OA动物模型软骨下骨异常改变,缓解关节软骨退变。
综上所述,尽管国内外学者从不同角度解释OA发生、发展,但其机制过于复杂,目前尚未完全明确。本研究发现,对大鼠去势后,其血清雌激素水平显著下降,骨代谢指标显著上升,Mankin评分增高,关节软骨退变及软骨下骨吸收明显,提示雌激素缺乏能够影响关节软骨及软骨下骨代谢,加速关节软骨退变及软骨下骨吸收,诱发OA。另外本实验还发现,去卵巢后软骨下骨的重塑得以启动,骨吸收增加,表现为骨质疏松,且软骨下骨骨质疏松早于关节软骨的退变,其可能是关节软骨退变的始发因素。但雌激素具体如何影响关节软骨及软骨下骨尚需进一步研究。 5 參考文献
[1] Frank M,Bwemero J,Kalunga D,et al.OA60 Public health and palliative care mix;a ccpmedicine approach to reverse the overgrowing burden of non-communicable diseases in tanzania[J].BMJ Support Palliat Care,2015,5(1):A19.
[2] Lou C,Xiang G,Weng Q,et al.Menopause is associated with articular cartilage degeneration:a clinical study of knee joint in 860 women[J].Menopause,2016,23(11):1239-1246.
[3] Andersson A,Bernardi AI,Stubelius A,et al.Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J].Rheumatology,2016,55(3):553-563.
[4] Yang PY,Tang CC,Chang YC,et al.Effects of tibolone on osteoarthritis in ovariectomized rats: association with nociceptive pain behaviour[J].Eur J Pain,2014,18(5):680-690.
[5] Janvier T,Jennane R,Valery A,et al.Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative:Tibial bone texture & knee OA progression[J].Osteoarthritis Cartilage,2017,25(2):259-266.
[6] Bellido M,Lugo L,Roman-Blas JA,et al.Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arthritis Res Ther,2010,12(4):R152.
[7] Ding M.Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issue[J].Acta Orthop Suppl,2010,81(340):51-53.
[8] Zhu S,Chen K,Lan Y,et al.Alendronate protects against articular cartilage erosion by inhibiting subchondral bone loss in ovariectomized rats[J].Bone,2013,53(2):340-349.
[9] Hügle T,Geurts J.What drives osteoarthritis?-synovial versus subchondral bone pathology[J].Rheumatology,2017,56(9):1461-1471.
[10] Barr AJ,Campbell TM,Hopkinson D,et al.A systematic review of the relationship between subchondral bone features,pain and structural pathology in peripheral joint osteoarthritisc[J].Arthritis Res Ther,2015,17(1):1-36.
[11] H?egh-Andersen P,Tankó LB,Andersen TL,et al.Ovariectomized rats as a model of postmenopausal osteoarthritis:validation and application[J].Arthritis Res Ther,2004,6(2):R169-180.
[12] Mankin HJ,Dorfman H,Lippiello L,et al.Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips.Ⅱ.Correlation of morphology with biochemical and metabolic data[J].J Bone Joint Surg Am,1971,53(3):523-537.
[13] Tang X,Wang S,Zhan S,et al.The Prevalence of Symptomatic Knee Osteoarthritis in China:Results From the China Health and Retirement Longitudinal Study[J].Arthritis Rheumatism,2016,68(3):648-653. [14] Goldring MB.Update on the biology of the chondrocyte and new approaches to treating cartilage diseases[J].Best Pract Res Clin Rheumatol,2006,20(5):1003-1025.
[15] Park JH,Hong JY,Han K,et al.Prevalence of symptomatic hip,knee,and spine osteoarthritis nationwide health survey analysis of an elderly Korean population[J].Medicine,2017,96(12):e6372.
[16] Andersson A,Bernardi AI,Stubelius A,et al.Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J].Rheumatology,2016,55(3):553-563.
[17] Riancho JA,García-Ibarbia C,Gravani A,et al.Common variations in estrogen-realated genes are associated with severe large-joint osteoarthritis:a multicenter genetic and functional study[J].Osteoarthritis Cartilage,2010,18(7):927-933.
[18] Sondergaard BC,Oestergaard S,Christiansen C,et al.The effect of oral calcitonin on cartilage turnover and surface erosion in the ovariectomized rat model[J]. Arthritis Rheum,2007,56(8):2674-2678.
[19] Wang Q,Liu Z,Wang Y,et al.Quantitative Ultrasound Assessment of Cartilage Degeneration in Ovariectomized Rats with Low Estrogen Levels[J].Ultrasound Med Biol,2016,42(1):290-298.
[20] Sharma AR,Jagga S,Lee SS,et al.Interplay between Cartilagea and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis[J].Int J Mol Sci,2013,14(10):19805-19830.
[21] Muraoka T,Hagino H,Okano T,et al.Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis[J].Arthritis Rheum,2007,56(10):3366-3374.
[22] Casta?eda S,Roman-Blas JA,Largo R,et al.Subchondral bone as a key target for osteoarthritis treatment[J].Biochemical Pharmacology,2012,83(3):315-323.
[23] Burr DB,Radin EL.Microfractures and microcracks in subchondral bone:are they relevant to osteoarthrosis?[J]. Rheum Dis Clin North Am,2003,29(4):675-685.
[24] Brandt KD,Myers SL,Burr D,et al.Osteoarthritic changes in canine articular cartilage,subchondral bone and synovium fifty-four months after transection of the anterior cruciate ligament[J].Arthritis Rheum,1991,34(12):1560-1570.
[25] Boyce BF,Xing L.Functions of RANKL/RANK/OPG in bone modeling and remodeling[J].Arch Biochem Biophys,2008,473(2):139-146.
[26] Kwan TS,Pelletier JP,Lajeunesse D,et al.The differential expression of osteoprotegerin(OPG)and receptor activator of nuclear factor κB ligand(RANKL)in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells[J]. Clinical and Experimental Rheumatology,2008,26(2):295-304.
[27] Wang YD,Tao MF,Wang L,et al.Selective regulation of osteoblastic OPG and RANKL by dehydroepiandroste-rone through activation of the estrogen receptor β-mediated MAPK signaling pathway[J].Horm Metab Res,2012,44(7):494-500.
[28] Pouran B,Arbabi V,Bleys RL,et al.Solute transport at the interface of cartilage and subchondral bone plate:Effect of micro-architecture[J].J Biomech,2017(52):148-154.
[29] Wang Y,Xu J,Zhang X,et al.TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis[J].Cell Death Dis,2017,8(3):e2715.
[30] Chen Y,Lin S,Sun Y,et al.Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling[J].Osteoarthritis Cartilage,2017,25(6):986-994.
收稿日期:2017-06-29;修回日期:2017-08-23
【关键词】 骨关节炎;骨质疏松;去卵巢;关节软骨;软骨下骨;大鼠
【ABSTRACT】Objective:To observe the effect of ovariectomy on cartilage and subchondral bone of knee joint of rats.Methods:Forty eight three-month-old SD female rats were randomly divided into a control group and an ovariectomized group(OVX group),with 24 rats in each group.No treatment was done to the control group ,while the OVX group underwent bilateral ovariectomy.Four,eight and twelve weeks after operation,8 rats of each group were randomly killed to test the levels of blood estradiol,CTX-Ⅰ and CTX-Ⅱ.Mankin score was done to their articular cartilage and microscopic CT was done to their subchondral bone.Results:Compared with the control group,after four,eight and twelve weeks,the levels of estradiol obviously decreased and the levels of significantly increased in the OVX group,and the difference was statistically significant(P < 0.01).Four weeks after operation,the differences of CTX-Ⅱ levels of the two groups were not statistically significant(P > 0.05).Eight and twelve weeks after operation,the level of CTX-Ⅱ in the OVX group was significantly higher than that in the control group,and the difference was statistically significant(P < 0.01).Four and eight weeks after operation,the difference of Mankin score in the two groups was not statistically significant(P > 0.05).Twelve weeks after operation,the Mankin score of the OVX group was higher than that of the control group,and the difference was statistically significant(P < 0.01).Four,eight and twelve weeks after operation,the bone volume fraction and trabecular thickness of the OVX group decreased compared with those in the control group,and the degree of trabecular separation increased,the difference being statistically significant(P < 0.01 or P < 0.05).Four weeks after operation,the difference of the number of trabecular bone in the two groups was not statistically significant(P > 0.05).Eight and twelve weeks after operation,the number of trabecular bone in the OVX group decreased compared with that of the control group,and the difference was statistically significant(P < 0.05).Conclusion:Ovariectomy reduces the level of serum estrogen,resulting in cartilage degeneration and subchondral bone osteoporosis in rats.Subchondral bone osteoporosis is earlier than articular cartilage degeneration,which may be the starting factor of articular cartilage degeneration. 【Keywords】 osteoarthritis;osteoporosis;ovariectomy;articular cartilage;subchondral bone;rats
骨关节炎(osteoarthritis,OA)为一种慢性退行性病变,系由于雌激素下降、年龄、肥胖、局部生物力学异常等生物学及力学因素共同作用引起关节软骨退化损伤、软骨下骨重塑、骨赘形成等,又称为骨关节病、老年性关节炎、退行性关节炎等,多见于中老年人,临床主要表现为关节疼痛、肿胀、僵硬、畸形、活动受限等。随着人口老龄化,发病率逐渐增高,全球发病率约为4%~13%[1],且女性发病率高于男性,其形成原因众多,机制极其复杂。其中雌激素及雌激素受体与OA高度相关[2-3],通过增加雌激素水平可以减轻关节软骨退变[4]。以往观点认为,关节软骨细胞凋亡及细胞外基质的降解是OA重要病理变化,其实OA发生、进展过程可能是由于软骨下骨、软骨细胞、细胞外基质所组成的复合单元结构和功能失衡的结果。软骨下骨骨小梁的改变情况可以用来预测OA进展[5],软骨下骨重塑会使关节软骨的应力分布异常,过分的应力传导至关节软骨,加速关节软骨损伤[6-7]。研究发现,通过抑制软骨下骨的丢失,能够有效缓解关节软骨退变,其可能为OA治疗的重要靶点[8],所以软骨下骨在OA发病及进展过程中起着至关重要的作用[9-10]。本实验探讨去卵巢对SD大鼠关节软骨及软骨下骨的影响。
1 实验材料
1.1 实验动物 3月龄雌性SD大鼠48只,体质量为360~370 g,购于湖南省斯莱克景达实验动物有限公司,动物许可证号:SCXK(湘)2016-0002。实验动物饲养于南华大学动物实验室,使用许可证号:SYXK(湘)2010-0006。12 h间隔照明,自由摄食及饮水,环境温度为22~26 ℃,湿度为50%~60%。严格按照中华人民共和国《实验动物管理条例》进行实验动物相关工作。
1.2 主要试剂与仪器设备 血清雌二醇ELISA试剂盒(广州皓跃生物科技有限公司);尿液Ⅰ型胶原C末端肽(CTX-Ⅰ)、尿液Ⅱ型胶原C末端肽(CTX-Ⅱ)等ELISA试剂盒(北京生物科技有限公司);奥林巴斯光学显微镜(日本奥林巴斯株式会社);MSE Micro-Centaur Centrifuge微型台式离心机(日本Sanyo公司);显微CT(Micro-CT)(广州中科恺盛医疗科技有限公司)。
2 实验方法
2.1 实验分组与造模 采用随机生成数字表将48只大鼠分为对照组和去卵巢组(OVX组),每组24只。参照文献[11]对OVX组进行双侧卵巢切除术构建动物模型。术后3 d每组实验动物予以肌肉注射青霉素4万U,每日1次预防感染,术后任其自由活动,不固定大鼠。对照组不做特殊处理。
2.2 标本采集及处理 每组实验动物于术后4,8,12周处死前收集24 h尿液样本,离心后储存于-20 ℃环境中。随后使用脊髓脱臼法每组随机处死8只,眼眶取血约3 mL,于低温离心机以3000 r·min-1离心20 min,每份分3次用移液枪取上层血清共约600 μL,置于5 mL EP管中,于-80 ℃冰箱中保存。取左侧胫骨近端,轻柔分离软组织,生理盐水冲洗,切片后行番红固绿染色。取右侧胫骨近端置于40 g·L-1多聚甲醛中固定。
2.3 血清雌二醇及尿CTX-Ⅰ、CTX-Ⅱ检测 使用ELISA测定血清雌二醇及尿CTX-Ⅰ、CTX-Ⅱ等指标。
2.4 组织形态学观察及Mankin评分 对左侧胫骨近端切片后行番红固绿染色,观察2组SD大鼠膝关节组织形态学改变。按照改良Mankin评分标准[12],分别从软骨外观改变、软骨细胞数、着色情况、潮线形态改变等方面评价关节软骨损伤程度。其中0~1分为正常,2~5分为早期OA,6~9分为中期OA,10~14分为晚期OA。记分由3个独立观察者进行。
2.5 Micro-CT技术观察软骨下骨 将固定于40 g·L-1多聚甲醛大鼠右侧胫骨近端取出后置于Micro-CT设备中进行检测。分别从骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数量(Tb.N)、骨小梁分离度(Tb.Sp)等方面对软骨下骨行定量分析。Micro-CT的扫描相关参数:微焦斑X光源13~20 μm,电压10~90 KVp,最大功率80 W,空间分辨率50 μm,每层间距为15 μm,横截面视野90 mm,单次扫描长度120 mm。
2.6 统计学方法 采用SPSS 20.0软件进行统计分析。计量资料以表示,组间比较采用成组t检验。以P < 0.05为差异有统计学意义。
3 结 果
3.1 2组血清雌二醇及尿CTX-Ⅰ、CTX-Ⅱ水平比较 术后4,8,12周OVX组血清雌二醇水平明显低于对照组,差异有统计学意义(P < 0.01)。
术后4,8,12周,OVX组CTX-Ⅰ水平明顯高于对照组,差异有统计学意义(P < 0.01);术后4周2组CTX-Ⅱ水平比较,差异无统计学意义(P > 0.05);术后8,12周,OVX组CTX-Ⅱ水平明显高于对照组,差异有统计学意义(P < 0.01)。见图1、表1。
3.2 关节软骨形态学及Mankin评分比较 OVX组4周时关节软骨变化不明显;8周时关节软骨表面粗糙,软骨细胞过多,潮线模糊;12周时关节软骨表层破坏,裂隙增大、加深,软骨组织结构排列不规则,番红固绿染色加深,软骨细胞增多,潮线不完整;对照组关节软骨无明显变化。术后4,8周2组Mankin评分比较,差异无统计学意义(P > 0.05);术后12周OVX组Mankin评分较对照组增高,差异有统计学意义(P < 0.01)。见图2、表2。
3.3 2组软骨下骨定量分析及Micro-CT图像比较 术后4,8,12周OVX组较对照组BV/TV、Tb.Th降低,Tb.Sp增加,差异有统计学意义(P < 0.01或P < 0.05)。术后4周2组Tb.N比较,差异无统计学意义(P > 0.05);术后8,12周OVX组Tb.N较对照组降低,差异有统计学意义(P < 0.05)。见图3、图4。
4 讨 论
随着人口老龄化,OA发病率呈逐年上升趋势,我国女性发病率为10.3%,男性发病率为5.7%[13]。OA不但给患者带来生理上的疼痛、功能障碍,还导致焦虑、抑郁、社交障碍等,对人类健康造成严重影响,最终给家庭和社会医疗带来巨大的经济负担和压力。本病发生及进展机制十分复杂,因此对其机制进行探索具有重要的意义。
目前医学界普遍认为,关节软骨细胞外基质降解为OA的重要病理变化[14],关节软骨的退变受雌激素及雌激素受体影响。雌激素为一种类固醇激素,主要分为雌激素与孕激素两大类。女性除生殖系统外,体内许多组织器官都受雌激素影响,例如骨骼、泌尿系统、神经系统等。绝经后女性人群中OA发病率明显增高,一项流行病学调查显示,50岁以上女性OA发病率显著高于男性[15]。
Andersson等[16]发现,选择性雌激素受体调节剂能够抑制关节软骨退变及减轻OA关节炎症;Riancho等[17]发现,雌激素相关受体基因的表达情况与OA的严重程度密切相关;既往研究也证实,对大鼠进行去势能够复制OA模型[18]。以上研究均提示,雌激素受体及雌激素水平与OA高度相关。本实验发现,大鼠去势4周后雌二醇水平下降明显,此时作为关节软骨降解产物的尿CTX-Ⅱ水平开始增高,但OVX组关节软骨组织Mankin评分增高并不明显,翻红固绿染色也可见关节软骨变化不明显,提示SD大鼠在去卵巢4周时,关节软骨尚未发生明显的退变。8周时翻红固绿染色可见关节软骨表面开始出现轻度粗糙、软骨细胞增生、潮线模糊等方面变化,此时Mankin评分虽进一步增高,但与对照组比较差异无统计学意义(P > 0.05)。12周时关节软骨开始出现较为明显的OA病理表现,OVX组Mankin评分较对照组明显增高,差异有统计学意义(P ﹤ 0.01),说明通过对大鼠行去卵巢术,大约12周就能建立出成功的膝OA动物模型。本研究结果提示,对大鼠去卵巢后,血清雌激素水平明显下降,雌激素的缺乏可导致关节软骨退变。这与目前的研究一致[19]。
OA发生及进展机制复杂,单纯从关节软骨解释其机制欠妥当。随着国内外学者对OA研究的不断深入,软骨下骨开始逐渐受到关注。软骨下骨为薄层皮质骨,位于钙化软骨深部。软骨下骨作用在于维持关节的形态、吸收应力、缓冲震荡、为关节软骨提供营养、影响关节软骨新陈代谢等[20]。Muraoka等[21]发现,在关节软骨退变之前软骨下骨已发生异常改变,因此软骨下骨可能是OA重要治疗靶点。
大致可通过生物力学和生物学两方面对软骨下骨影响OA的发生及进展进行解释。OA中软骨下骨重塑极度活跃,软骨下骨的骨重塑包括骨吸收及耦联骨形成两方面,其中OA软骨下骨的骨重塑早期以骨吸收为主[22],且OA早期软骨下骨极易发生微损伤[23],反复微损伤启动骨重塑过程,引起过量的骨形成,最终导致OA晚期软骨下骨骨密度增加[24]。软骨下骨重塑失衡使其吸收应力能力降低,关节应力分布异常,从而导致关节软骨退变。RANKL/RANK/OPG信号通路为调节骨吸收的最后通路[25],参与调控OA患者软骨下骨的骨重塑过程[26]。雌激素能上调OPG表达[27],抑制前破骨细胞分化为成熟的破骨细胞,减轻软骨下骨吸收。尿CTX-Ⅰ被认为是使用最为广泛的胶原降解标志物之一,它属于骨重塑中的重要骨代谢指标,其水平可反映破骨细胞活性及软骨下骨骨吸收情况。本实验中,OVX组尿CTX-Ⅰ水平较对照组增高,提示雌激素缺乏后,破骨细胞活性增强,软骨下骨骨吸收增加。通过Micro-CT也发现,自4周开始OVX组软骨下骨骨小梁断裂、分布稀疏、厚度变薄、结构紊乱,并随时间推移呈现加重趋势。定量分析发现,4,8,12周的BV/TV、Tb.Th、Tb.N较对照组降低,Tb.Sp较对照组增高,提示通过去卵巢所导致的雌激素缺乏可使SD大鼠软骨下骨Tb.N、Tb.Th、密度等下降,软骨下骨发生质与量的变化,呈现出骨质疏松。结合目前国内外研究,我们认为雌激素缺乏可通过某种机制启动软骨下骨重塑,激活破骨细胞,促进软骨下骨骨吸收,使软骨下骨发生骨质疏松。另外,本研究发现术后4周时OVX组大鼠软骨下骨已经开始出现骨质疏松,此时关节软骨尚未发生退变,从软骨下骨及关节软骨两者开始出现病理变化的时间来看,不难发现软骨下骨的骨质疏松早于关节软骨的退变。于是我们推测先于关节软骨退变的软骨下骨骨质疏松导致软骨下骨硬度和强度改变,使关节软骨应力分布异常,最终通过异常的生物力学因素影响关节软骨功能,促进关节软骨退变。本实验结果提示,软骨下骨的骨质疏松在OA的发生及进展过程中扮演着重要角色。当然,软骨下骨还可通过复杂的生物学因素对关节软骨的退变产生影响。软骨下骨与关节软骨之间存在直接串联[28],两者之间物质的运输可以通过这些串联来完成。软骨下骨中过量的血管侵入关节软骨,会加速关节软骨内骨化。Wang等[29]發现,肿瘤坏死因子-α能上调LRG1表达,影响间充质干细胞迁移,促进软骨下骨血管生成及耦联骨形成,加速关节软骨损伤。Chen等[30]发现,OA患者软骨下骨SDF-1呈现出高表达,通过抑制SDF-1信号通路能够减轻OA动物模型软骨下骨异常改变,缓解关节软骨退变。
综上所述,尽管国内外学者从不同角度解释OA发生、发展,但其机制过于复杂,目前尚未完全明确。本研究发现,对大鼠去势后,其血清雌激素水平显著下降,骨代谢指标显著上升,Mankin评分增高,关节软骨退变及软骨下骨吸收明显,提示雌激素缺乏能够影响关节软骨及软骨下骨代谢,加速关节软骨退变及软骨下骨吸收,诱发OA。另外本实验还发现,去卵巢后软骨下骨的重塑得以启动,骨吸收增加,表现为骨质疏松,且软骨下骨骨质疏松早于关节软骨的退变,其可能是关节软骨退变的始发因素。但雌激素具体如何影响关节软骨及软骨下骨尚需进一步研究。 5 參考文献
[1] Frank M,Bwemero J,Kalunga D,et al.OA60 Public health and palliative care mix;a ccpmedicine approach to reverse the overgrowing burden of non-communicable diseases in tanzania[J].BMJ Support Palliat Care,2015,5(1):A19.
[2] Lou C,Xiang G,Weng Q,et al.Menopause is associated with articular cartilage degeneration:a clinical study of knee joint in 860 women[J].Menopause,2016,23(11):1239-1246.
[3] Andersson A,Bernardi AI,Stubelius A,et al.Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J].Rheumatology,2016,55(3):553-563.
[4] Yang PY,Tang CC,Chang YC,et al.Effects of tibolone on osteoarthritis in ovariectomized rats: association with nociceptive pain behaviour[J].Eur J Pain,2014,18(5):680-690.
[5] Janvier T,Jennane R,Valery A,et al.Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative:Tibial bone texture & knee OA progression[J].Osteoarthritis Cartilage,2017,25(2):259-266.
[6] Bellido M,Lugo L,Roman-Blas JA,et al.Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arthritis Res Ther,2010,12(4):R152.
[7] Ding M.Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issue[J].Acta Orthop Suppl,2010,81(340):51-53.
[8] Zhu S,Chen K,Lan Y,et al.Alendronate protects against articular cartilage erosion by inhibiting subchondral bone loss in ovariectomized rats[J].Bone,2013,53(2):340-349.
[9] Hügle T,Geurts J.What drives osteoarthritis?-synovial versus subchondral bone pathology[J].Rheumatology,2017,56(9):1461-1471.
[10] Barr AJ,Campbell TM,Hopkinson D,et al.A systematic review of the relationship between subchondral bone features,pain and structural pathology in peripheral joint osteoarthritisc[J].Arthritis Res Ther,2015,17(1):1-36.
[11] H?egh-Andersen P,Tankó LB,Andersen TL,et al.Ovariectomized rats as a model of postmenopausal osteoarthritis:validation and application[J].Arthritis Res Ther,2004,6(2):R169-180.
[12] Mankin HJ,Dorfman H,Lippiello L,et al.Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips.Ⅱ.Correlation of morphology with biochemical and metabolic data[J].J Bone Joint Surg Am,1971,53(3):523-537.
[13] Tang X,Wang S,Zhan S,et al.The Prevalence of Symptomatic Knee Osteoarthritis in China:Results From the China Health and Retirement Longitudinal Study[J].Arthritis Rheumatism,2016,68(3):648-653. [14] Goldring MB.Update on the biology of the chondrocyte and new approaches to treating cartilage diseases[J].Best Pract Res Clin Rheumatol,2006,20(5):1003-1025.
[15] Park JH,Hong JY,Han K,et al.Prevalence of symptomatic hip,knee,and spine osteoarthritis nationwide health survey analysis of an elderly Korean population[J].Medicine,2017,96(12):e6372.
[16] Andersson A,Bernardi AI,Stubelius A,et al.Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J].Rheumatology,2016,55(3):553-563.
[17] Riancho JA,García-Ibarbia C,Gravani A,et al.Common variations in estrogen-realated genes are associated with severe large-joint osteoarthritis:a multicenter genetic and functional study[J].Osteoarthritis Cartilage,2010,18(7):927-933.
[18] Sondergaard BC,Oestergaard S,Christiansen C,et al.The effect of oral calcitonin on cartilage turnover and surface erosion in the ovariectomized rat model[J]. Arthritis Rheum,2007,56(8):2674-2678.
[19] Wang Q,Liu Z,Wang Y,et al.Quantitative Ultrasound Assessment of Cartilage Degeneration in Ovariectomized Rats with Low Estrogen Levels[J].Ultrasound Med Biol,2016,42(1):290-298.
[20] Sharma AR,Jagga S,Lee SS,et al.Interplay between Cartilagea and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis[J].Int J Mol Sci,2013,14(10):19805-19830.
[21] Muraoka T,Hagino H,Okano T,et al.Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis[J].Arthritis Rheum,2007,56(10):3366-3374.
[22] Casta?eda S,Roman-Blas JA,Largo R,et al.Subchondral bone as a key target for osteoarthritis treatment[J].Biochemical Pharmacology,2012,83(3):315-323.
[23] Burr DB,Radin EL.Microfractures and microcracks in subchondral bone:are they relevant to osteoarthrosis?[J]. Rheum Dis Clin North Am,2003,29(4):675-685.
[24] Brandt KD,Myers SL,Burr D,et al.Osteoarthritic changes in canine articular cartilage,subchondral bone and synovium fifty-four months after transection of the anterior cruciate ligament[J].Arthritis Rheum,1991,34(12):1560-1570.
[25] Boyce BF,Xing L.Functions of RANKL/RANK/OPG in bone modeling and remodeling[J].Arch Biochem Biophys,2008,473(2):139-146.
[26] Kwan TS,Pelletier JP,Lajeunesse D,et al.The differential expression of osteoprotegerin(OPG)and receptor activator of nuclear factor κB ligand(RANKL)in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells[J]. Clinical and Experimental Rheumatology,2008,26(2):295-304.
[27] Wang YD,Tao MF,Wang L,et al.Selective regulation of osteoblastic OPG and RANKL by dehydroepiandroste-rone through activation of the estrogen receptor β-mediated MAPK signaling pathway[J].Horm Metab Res,2012,44(7):494-500.
[28] Pouran B,Arbabi V,Bleys RL,et al.Solute transport at the interface of cartilage and subchondral bone plate:Effect of micro-architecture[J].J Biomech,2017(52):148-154.
[29] Wang Y,Xu J,Zhang X,et al.TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis[J].Cell Death Dis,2017,8(3):e2715.
[30] Chen Y,Lin S,Sun Y,et al.Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling[J].Osteoarthritis Cartilage,2017,25(6):986-994.
收稿日期:2017-06-29;修回日期:2017-08-23