论文部分内容阅读
目的哈希是大规模图像检索的有效方法。为提高检索精度,哈希码应保留语义信息。图像之间越相似,其哈希码也应越接近。现有方法首先提取描述图像整体的特征,然后生成哈希码。这种方法不能精确地描述图像包含的多个目标,限制了多标签图像检索的精度。为此提出一种基于卷积神经网络和目标提取的哈希生成方法。方法首先提取图像中可能包含目标的一系列区域,然后用深度卷积神经网络提取每个区域的特征并进行融合,通过生成一组特征来刻画图像中的每个目标,最后再产生整幅图像的哈希码。采用Triplet Loss的训练方法,使得哈希码尽可