论文部分内容阅读
手语识别的研究和实现具有重要的学术价值和广泛的应用前景.提出了基于混合元捆绑的隐马尔可夫模型(TMHMM)用于视觉手语识别.TMHMM的模型刻画精度接近于连续隐马尔可夫模型,因此能保证最终的识别率不会明显降低,同时通过混合元捆绑降低计算成本,有效地提高识别速度.在特征提取方面,提出的层次型特征描述方案更加适合于中等或更大词汇量的手语识别.在此基础上,通过集成鲁棒的双手检测、背景去除和瞳孔检测等技术,实现了一个面向中等词汇量的中国手语视觉识别系统.实验结果表明,提出的方法能较好地实现常规背景中的中等词