论文部分内容阅读
如何调整粒子群算法的参数引起了大量研究人员的关注.本文提出了一种快速收敛的非参数粒子群优化算法.为了平衡全局搜索和局部搜索,本文算法融合了基于exemplar的学习策略和多交叉操作.根据进一步的稳定性分析,粒子群收敛于搜索空间中的一个固定位置,同时粒子群的位置方差收敛于零点.本文收集了常用的24个准则函数,与7个类似的粒子群算法进行了比较.实验结果表明,本文搜索算法在大部分准则函数上的搜索性能均优于同类算法.同时本文算法在收敛速度上要远优于同类算法.